Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpaddss Structured version   Visualization version   GIF version

Theorem relexpaddss 39928
Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 14403 or when the sum of the powers isn't 1 as shown by relexpaddg 14402. (Contributed by RP, 3-Jun-2020.)
Assertion
Ref Expression
relexpaddss ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddss
StepHypRef Expression
1 elnn0 11888 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 elnn0 11888 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 217 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 relexpaddnn 14400 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
5 eqimss 4027 . . . . . . . 8 (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
64, 5syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
763exp 1113 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
8 elnn1uz2 12314 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
9 relco 6095 . . . . . . . . . . . . . 14 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
10 dfrel2 6044 . . . . . . . . . . . . . . 15 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
1110biimpi 217 . . . . . . . . . . . . . 14 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
129, 11ax-mp 5 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
13 cnvco 5755 . . . . . . . . . . . . . . . . 17 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅)))
14 cnvresid 6430 . . . . . . . . . . . . . . . . . 18 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
1514coeq2i 5730 . . . . . . . . . . . . . . . . 17 (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
16 coires1 6115 . . . . . . . . . . . . . . . . 17 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
1713, 15, 163eqtri 2853 . . . . . . . . . . . . . . . 16 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
18 eqimss 4027 . . . . . . . . . . . . . . . 16 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
20 cnvss 5742 . . . . . . . . . . . . . . 15 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
22 resss 5877 . . . . . . . . . . . . . . 15 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
23 cnvss 5742 . . . . . . . . . . . . . . 15 ((𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅(𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
2521, 24sstri 3980 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2612, 25eqsstrri 4006 . . . . . . . . . . . 12 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
27 cnvcnvss 6049 . . . . . . . . . . . 12 𝑅𝑅
2826, 27sstri 3980 . . . . . . . . . . 11 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2928a1i 11 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅)
30 simp1 1130 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑁 = 0)
3130oveq2d 7164 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
32 relexp0g 14371 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
33323ad2ant3 1129 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3431, 33eqtrd 2861 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
35 simp2 1131 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑀 = 1)
3635oveq2d 7164 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟1))
37 relexp1g 14375 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
38373ad2ant3 1129 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
3936, 38eqtrd 2861 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = 𝑅)
4034, 39coeq12d 5734 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
4130, 35oveq12d 7166 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 1))
42 1cnd 10625 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 1 ∈ ℂ)
4342addid2d 10830 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (0 + 1) = 1)
4441, 43eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
4544oveq2d 7164 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
4645, 38eqtrd 2861 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
4729, 40, 463sstr4d 4018 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
48473exp 1113 . . . . . . . 8 (𝑁 = 0 → (𝑀 = 1 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
49 coires1 6115 . . . . . . . . . . . . . 14 ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅))
50 simp2 1131 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ (ℤ‘2))
51 cnvexg 7617 . . . . . . . . . . . . . . . . 17 (𝑅𝑉𝑅 ∈ V)
52513ad2ant3 1129 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅 ∈ V)
53 relexpuzrel 14401 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅 ∈ V) → Rel (𝑅𝑟𝑀))
5450, 52, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
55 eluz2nn 12273 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
5650, 55syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
57 relexpnndm 14390 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑅 ∈ V) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
5856, 52, 57syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
59 df-rn 5565 . . . . . . . . . . . . . . . . 17 ran 𝑅 = dom 𝑅
60 ssun2 4153 . . . . . . . . . . . . . . . . 17 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6159, 60eqsstrri 4006 . . . . . . . . . . . . . . . 16 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6258, 61syl6ss 3983 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅))
63 relssres 5892 . . . . . . . . . . . . . . 15 ((Rel (𝑅𝑟𝑀) ∧ dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6454, 62, 63syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6549, 64syl5eq 2873 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑀))
66 cnvco 5755 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
67 eluzge2nn0 12276 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
6850, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ0)
69 simp3 1132 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅𝑉)
70 relexpcnv 14384 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7214a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7371, 72coeq12d 5734 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7466, 73syl5eq 2873 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7565, 74, 713eqtr4d 2871 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
76 relco 6095 . . . . . . . . . . . . 13 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀))
77 relexpuzrel 14401 . . . . . . . . . . . . . 14 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
78773adant1 1124 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
79 cnveqb 6051 . . . . . . . . . . . . 13 ((Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) ∧ Rel (𝑅𝑟𝑀)) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8076, 78, 79sylancr 587 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8175, 80mpbird 258 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
82 simp1 1130 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 = 0)
8382oveq2d 7164 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
84323ad2ant3 1129 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8583, 84eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8685coeq1d 5731 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)))
8782oveq1d 7163 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 𝑀))
88 eluzelcn 12244 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℂ)
8950, 88syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
9089addid2d 10830 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (0 + 𝑀) = 𝑀)
9187, 90eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑀)
9291oveq2d 7164 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑀))
9381, 86, 923eqtr4d 2871 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
9493, 5syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
95943exp 1113 . . . . . . . 8 (𝑁 = 0 → (𝑀 ∈ (ℤ‘2) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
9648, 95jaod 855 . . . . . . 7 (𝑁 = 0 → ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
978, 96syl5bi 243 . . . . . 6 (𝑁 = 0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
987, 97jaoi 853 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
993, 98syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
100 elnn1uz2 12314 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
101100biimpi 217 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
102 coires1 6115 . . . . . . . . . . . 12 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
103 resss 5877 . . . . . . . . . . . 12 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
104102, 103eqsstri 4005 . . . . . . . . . . 11 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅
105104a1i 11 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅)
106 simp1 1130 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 1)
107106oveq2d 7164 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟1))
108373ad2ant3 1129 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
109107, 108eqtrd 2861 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = 𝑅)
110 simp2 1131 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
111110oveq2d 7164 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
112323ad2ant3 1129 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
113111, 112eqtrd 2861 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
114109, 113coeq12d 5734 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
115106, 110oveq12d 7166 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (1 + 0))
116 1cnd 10625 . . . . . . . . . . . . . 14 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 1 ∈ ℂ)
117116addid1d 10829 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (1 + 0) = 1)
118115, 117eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
119118oveq2d 7164 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
120119, 108eqtrd 2861 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
121105, 114, 1203sstr4d 4018 . . . . . . . . 9 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1221213exp 1113 . . . . . . . 8 (𝑁 = 1 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
123 coires1 6115 . . . . . . . . . . . 12 ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅))
124 relexpuzrel 14401 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
1251243adant2 1125 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
126 simp1 1130 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ (ℤ‘2))
127 eluz2nn 12273 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℕ)
129 simp3 1132 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
130 relexpnndm 14390 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
131128, 129, 130syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
132 ssun1 4152 . . . . . . . . . . . . . 14 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
133131, 132syl6ss 3983 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
134 relssres 5892 . . . . . . . . . . . . 13 ((Rel (𝑅𝑟𝑁) ∧ dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
135125, 133, 134syl2anc 584 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
136123, 135syl5eq 2873 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
137 simp2 1131 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
138137oveq2d 7164 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
139323ad2ant3 1129 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
140138, 139eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
141140coeq2d 5732 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
142137oveq2d 7164 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (𝑁 + 0))
143 eluzelcn 12244 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
144126, 143syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
145144addid1d 10829 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 0) = 𝑁)
146142, 145eqtrd 2861 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑁)
147146oveq2d 7164 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
148136, 141, 1473eqtr4d 2871 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
149148, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1501493exp 1113 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
151122, 150jaoi 853 . . . . . . 7 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
152101, 151syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
153 coires1 6115 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅))
154 resres 5865 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)))
155 inidm 4199 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
156155reseq2i 5849 . . . . . . . . . 10 ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
157153, 154, 1563eqtri 2853 . . . . . . . . 9 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
158 simp1 1130 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
159158oveq2d 7164 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
160323ad2ant3 1129 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
161159, 160eqtrd 2861 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
162 simp2 1131 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
163162oveq2d 7164 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
164163, 160eqtrd 2861 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
165161, 164coeq12d 5734 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
166158, 162oveq12d 7166 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 0))
167 00id 10804 . . . . . . . . . . . . 13 (0 + 0) = 0
168167a1i 11 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (0 + 0) = 0)
169166, 168eqtrd 2861 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 0)
170169oveq2d 7164 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟0))
171170, 160eqtrd 2861 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
172157, 165, 1713eqtr4a 2887 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
173172, 5syl 17 . . . . . . 7 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1741733exp 1113 . . . . . 6 (𝑁 = 0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
175152, 174jaoi 853 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1763, 175syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
17799, 176jaod 855 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1781, 177syl5bi 243 . 2 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1791783imp 1105 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wo 843  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3500  cun 3938  cin 3939  wss 3940   I cid 5458  ccnv 5553  dom cdm 5554  ran crn 5555  cres 5556  ccom 5558  Rel wrel 5559  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cn 11627  2c2 11681  0cn0 11886  cuz 12232  𝑟crelexp 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-seq 13360  df-relexp 14370
This theorem is referenced by:  iunrelexpuztr  39929  cotrclrcl  39952
  Copyright terms: Public domain W3C validator