MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weisoeq2 Structured version   Visualization version   GIF version

Theorem weisoeq2 7297
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7916. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weisoeq2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)

Proof of Theorem weisoeq2
StepHypRef Expression
1 isocnv 7271 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isocnv 7271 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))
31, 2anim12i 613 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)))
4 weisoeq 7296 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → 𝐹 = 𝐺)
53, 4sylan2 593 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
6 simprl 770 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
7 isof1o 7264 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1orel 6771 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
96, 7, 83syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹)
10 simprr 772 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 7264 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴1-1-onto𝐵)
12 f1orel 6771 . . . 4 (𝐺:𝐴1-1-onto𝐵 → Rel 𝐺)
1310, 11, 123syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺)
14 cnveqb 6149 . . 3 ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺𝐹 = 𝐺))
159, 13, 14syl2anc 584 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺𝐹 = 𝐺))
165, 15mpbird 257 1 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   Se wse 5574   We wwe 5575  ccnv 5622  Rel wrel 5628  1-1-ontowf1o 6485   Isom wiso 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495
This theorem is referenced by:  wemoiso2  7916
  Copyright terms: Public domain W3C validator