![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weisoeq2 | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7998. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
weisoeq2 | ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv 7350 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
2 | isocnv 7350 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) |
4 | weisoeq 7375 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → ◡𝐹 = ◡𝐺) | |
5 | 3, 4 | sylan2 593 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → ◡𝐹 = ◡𝐺) |
6 | simprl 771 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
7 | isof1o 7343 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
8 | f1orel 6852 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
9 | 6, 7, 8 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹) |
10 | simprr 773 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
11 | isof1o 7343 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) | |
12 | f1orel 6852 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺) |
14 | cnveqb 6218 | . . 3 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) | |
15 | 9, 13, 14 | syl2anc 584 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) |
16 | 5, 15 | mpbird 257 | 1 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Se wse 5639 We wwe 5640 ◡ccnv 5688 Rel wrel 5694 –1-1-onto→wf1o 6562 Isom wiso 6564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 |
This theorem is referenced by: wemoiso2 7998 |
Copyright terms: Public domain | W3C validator |