MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weisoeq2 Structured version   Visualization version   GIF version

Theorem weisoeq2 6832
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7385. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weisoeq2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)

Proof of Theorem weisoeq2
StepHypRef Expression
1 isocnv 6806 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isocnv 6806 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))
31, 2anim12i 607 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)))
4 weisoeq 6831 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → 𝐹 = 𝐺)
53, 4sylan2 587 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
6 simprl 788 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
7 isof1o 6799 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1orel 6357 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
96, 7, 83syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹)
10 simprr 790 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 6799 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴1-1-onto𝐵)
12 f1orel 6357 . . . 4 (𝐺:𝐴1-1-onto𝐵 → Rel 𝐺)
1310, 11, 123syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺)
14 cnveqb 5804 . . 3 ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺𝐹 = 𝐺))
159, 13, 14syl2anc 580 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺𝐹 = 𝐺))
165, 15mpbird 249 1 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653   Se wse 5267   We wwe 5268  ccnv 5309  Rel wrel 5315  1-1-ontowf1o 6098   Isom wiso 6100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108
This theorem is referenced by:  wemoiso2  7385
  Copyright terms: Public domain W3C validator