MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weisoeq2 Structured version   Visualization version   GIF version

Theorem weisoeq2 7376
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7998. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
weisoeq2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)

Proof of Theorem weisoeq2
StepHypRef Expression
1 isocnv 7350 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 isocnv 7350 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))
31, 2anim12i 613 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)))
4 weisoeq 7375 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ 𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → 𝐹 = 𝐺)
53, 4sylan2 593 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
6 simprl 771 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
7 isof1o 7343 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1orel 6852 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
96, 7, 83syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹)
10 simprr 773 . . . 4 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 7343 . . . 4 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴1-1-onto𝐵)
12 f1orel 6852 . . . 4 (𝐺:𝐴1-1-onto𝐵 → Rel 𝐺)
1310, 11, 123syl 18 . . 3 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺)
14 cnveqb 6218 . . 3 ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺𝐹 = 𝐺))
159, 13, 14syl2anc 584 . 2 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺𝐹 = 𝐺))
165, 15mpbird 257 1 (((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537   Se wse 5639   We wwe 5640  ccnv 5688  Rel wrel 5694  1-1-ontowf1o 6562   Isom wiso 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572
This theorem is referenced by:  wemoiso2  7998
  Copyright terms: Public domain W3C validator