Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > weisoeq2 | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7790. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
weisoeq2 | ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv 7181 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
2 | isocnv 7181 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) |
4 | weisoeq 7206 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → ◡𝐹 = ◡𝐺) | |
5 | 3, 4 | sylan2 592 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → ◡𝐹 = ◡𝐺) |
6 | simprl 767 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
7 | isof1o 7174 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
8 | f1orel 6703 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
9 | 6, 7, 8 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹) |
10 | simprr 769 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
11 | isof1o 7174 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) | |
12 | f1orel 6703 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺) |
14 | cnveqb 6088 | . . 3 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) | |
15 | 9, 13, 14 | syl2anc 583 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) |
16 | 5, 15 | mpbird 256 | 1 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Se wse 5533 We wwe 5534 ◡ccnv 5579 Rel wrel 5585 –1-1-onto→wf1o 6417 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 |
This theorem is referenced by: wemoiso2 7790 |
Copyright terms: Public domain | W3C validator |