MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvrescnv Structured version   Visualization version   GIF version

Theorem cnvrescnv 6168
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
cnvrescnv (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))

Proof of Theorem cnvrescnv
StepHypRef Expression
1 df-res 5650 . . 3 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
21cnveqi 5838 . 2 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
3 cnvin 6117 . 2 (𝑅 ∩ (𝐵 × V)) = (𝑅(𝐵 × V))
4 cnvcnv 6165 . . . 4 𝑅 = (𝑅 ∩ (V × V))
5 cnvxp 6130 . . . 4 (𝐵 × V) = (V × 𝐵)
64, 5ineq12i 4181 . . 3 (𝑅(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵))
7 inass 4191 . . 3 ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵)))
8 inxp 5795 . . . . 5 ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵))
9 inv1 4361 . . . . . . 7 (V ∩ V) = V
109eqcomi 2738 . . . . . 6 V = (V ∩ V)
11 ssv 3971 . . . . . . . 8 𝐵 ⊆ V
12 ssid 3969 . . . . . . . 8 𝐵𝐵
1311, 12ssini 4203 . . . . . . 7 𝐵 ⊆ (V ∩ 𝐵)
14 inss2 4201 . . . . . . 7 (V ∩ 𝐵) ⊆ 𝐵
1513, 14eqssi 3963 . . . . . 6 𝐵 = (V ∩ 𝐵)
1610, 15xpeq12i 5666 . . . . 5 (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵))
178, 16eqtr4i 2755 . . . 4 ((V × V) ∩ (V × 𝐵)) = (V × 𝐵)
1817ineq2i 4180 . . 3 (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵))
196, 7, 183eqtri 2756 . 2 (𝑅(𝐵 × V)) = (𝑅 ∩ (V × 𝐵))
202, 3, 193eqtri 2756 1 (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cin 3913   × cxp 5636  ccnv 5637  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-res 5650
This theorem is referenced by:  fressupp  32611
  Copyright terms: Public domain W3C validator