![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvrescnv | Structured version Visualization version GIF version |
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
Ref | Expression |
---|---|
cnvrescnv | ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5681 | . . 3 ⊢ (◡𝑅 ↾ 𝐵) = (◡𝑅 ∩ (𝐵 × V)) | |
2 | 1 | cnveqi 5868 | . 2 ⊢ ◡(◡𝑅 ↾ 𝐵) = ◡(◡𝑅 ∩ (𝐵 × V)) |
3 | cnvin 6138 | . 2 ⊢ ◡(◡𝑅 ∩ (𝐵 × V)) = (◡◡𝑅 ∩ ◡(𝐵 × V)) | |
4 | cnvcnv 6185 | . . . 4 ⊢ ◡◡𝑅 = (𝑅 ∩ (V × V)) | |
5 | cnvxp 6150 | . . . 4 ⊢ ◡(𝐵 × V) = (V × 𝐵) | |
6 | 4, 5 | ineq12i 4205 | . . 3 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) |
7 | inass 4214 | . . 3 ⊢ ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) | |
8 | inxp 5825 | . . . . 5 ⊢ ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵)) | |
9 | inv1 4389 | . . . . . . 7 ⊢ (V ∩ V) = V | |
10 | 9 | eqcomi 2735 | . . . . . 6 ⊢ V = (V ∩ V) |
11 | ssv 4001 | . . . . . . . 8 ⊢ 𝐵 ⊆ V | |
12 | ssid 3999 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
13 | 11, 12 | ssini 4226 | . . . . . . 7 ⊢ 𝐵 ⊆ (V ∩ 𝐵) |
14 | inss2 4224 | . . . . . . 7 ⊢ (V ∩ 𝐵) ⊆ 𝐵 | |
15 | 13, 14 | eqssi 3993 | . . . . . 6 ⊢ 𝐵 = (V ∩ 𝐵) |
16 | 10, 15 | xpeq12i 5697 | . . . . 5 ⊢ (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵)) |
17 | 8, 16 | eqtr4i 2757 | . . . 4 ⊢ ((V × V) ∩ (V × 𝐵)) = (V × 𝐵) |
18 | 17 | ineq2i 4204 | . . 3 ⊢ (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵)) |
19 | 6, 7, 18 | 3eqtri 2758 | . 2 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = (𝑅 ∩ (V × 𝐵)) |
20 | 2, 3, 19 | 3eqtri 2758 | 1 ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3468 ∩ cin 3942 × cxp 5667 ◡ccnv 5668 ↾ cres 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-res 5681 |
This theorem is referenced by: fressupp 32417 |
Copyright terms: Public domain | W3C validator |