![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvrescnv | Structured version Visualization version GIF version |
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
Ref | Expression |
---|---|
cnvrescnv | ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5701 | . . 3 ⊢ (◡𝑅 ↾ 𝐵) = (◡𝑅 ∩ (𝐵 × V)) | |
2 | 1 | cnveqi 5888 | . 2 ⊢ ◡(◡𝑅 ↾ 𝐵) = ◡(◡𝑅 ∩ (𝐵 × V)) |
3 | cnvin 6167 | . 2 ⊢ ◡(◡𝑅 ∩ (𝐵 × V)) = (◡◡𝑅 ∩ ◡(𝐵 × V)) | |
4 | cnvcnv 6214 | . . . 4 ⊢ ◡◡𝑅 = (𝑅 ∩ (V × V)) | |
5 | cnvxp 6179 | . . . 4 ⊢ ◡(𝐵 × V) = (V × 𝐵) | |
6 | 4, 5 | ineq12i 4226 | . . 3 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) |
7 | inass 4236 | . . 3 ⊢ ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) | |
8 | inxp 5845 | . . . . 5 ⊢ ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵)) | |
9 | inv1 4404 | . . . . . . 7 ⊢ (V ∩ V) = V | |
10 | 9 | eqcomi 2744 | . . . . . 6 ⊢ V = (V ∩ V) |
11 | ssv 4020 | . . . . . . . 8 ⊢ 𝐵 ⊆ V | |
12 | ssid 4018 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
13 | 11, 12 | ssini 4248 | . . . . . . 7 ⊢ 𝐵 ⊆ (V ∩ 𝐵) |
14 | inss2 4246 | . . . . . . 7 ⊢ (V ∩ 𝐵) ⊆ 𝐵 | |
15 | 13, 14 | eqssi 4012 | . . . . . 6 ⊢ 𝐵 = (V ∩ 𝐵) |
16 | 10, 15 | xpeq12i 5717 | . . . . 5 ⊢ (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵)) |
17 | 8, 16 | eqtr4i 2766 | . . . 4 ⊢ ((V × V) ∩ (V × 𝐵)) = (V × 𝐵) |
18 | 17 | ineq2i 4225 | . . 3 ⊢ (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵)) |
19 | 6, 7, 18 | 3eqtri 2767 | . 2 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = (𝑅 ∩ (V × 𝐵)) |
20 | 2, 3, 19 | 3eqtri 2767 | 1 ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3478 ∩ cin 3962 × cxp 5687 ◡ccnv 5688 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-res 5701 |
This theorem is referenced by: fressupp 32703 |
Copyright terms: Public domain | W3C validator |