| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvrescnv | Structured version Visualization version GIF version | ||
| Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| cnvrescnv | ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5631 | . . 3 ⊢ (◡𝑅 ↾ 𝐵) = (◡𝑅 ∩ (𝐵 × V)) | |
| 2 | 1 | cnveqi 5819 | . 2 ⊢ ◡(◡𝑅 ↾ 𝐵) = ◡(◡𝑅 ∩ (𝐵 × V)) |
| 3 | cnvin 6097 | . 2 ⊢ ◡(◡𝑅 ∩ (𝐵 × V)) = (◡◡𝑅 ∩ ◡(𝐵 × V)) | |
| 4 | cnvcnv 6145 | . . . 4 ⊢ ◡◡𝑅 = (𝑅 ∩ (V × V)) | |
| 5 | cnvxp 6110 | . . . 4 ⊢ ◡(𝐵 × V) = (V × 𝐵) | |
| 6 | 4, 5 | ineq12i 4167 | . . 3 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) |
| 7 | inass 4177 | . . 3 ⊢ ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) | |
| 8 | inxp 5776 | . . . . 5 ⊢ ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵)) | |
| 9 | inv1 4347 | . . . . . . 7 ⊢ (V ∩ V) = V | |
| 10 | 9 | eqcomi 2740 | . . . . . 6 ⊢ V = (V ∩ V) |
| 11 | ssv 3954 | . . . . . . . 8 ⊢ 𝐵 ⊆ V | |
| 12 | ssid 3952 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
| 13 | 11, 12 | ssini 4189 | . . . . . . 7 ⊢ 𝐵 ⊆ (V ∩ 𝐵) |
| 14 | inss2 4187 | . . . . . . 7 ⊢ (V ∩ 𝐵) ⊆ 𝐵 | |
| 15 | 13, 14 | eqssi 3946 | . . . . . 6 ⊢ 𝐵 = (V ∩ 𝐵) |
| 16 | 10, 15 | xpeq12i 5647 | . . . . 5 ⊢ (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵)) |
| 17 | 8, 16 | eqtr4i 2757 | . . . 4 ⊢ ((V × V) ∩ (V × 𝐵)) = (V × 𝐵) |
| 18 | 17 | ineq2i 4166 | . . 3 ⊢ (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵)) |
| 19 | 6, 7, 18 | 3eqtri 2758 | . 2 ⊢ (◡◡𝑅 ∩ ◡(𝐵 × V)) = (𝑅 ∩ (V × 𝐵)) |
| 20 | 2, 3, 19 | 3eqtri 2758 | 1 ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∩ cin 3896 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-res 5631 |
| This theorem is referenced by: fressupp 32676 |
| Copyright terms: Public domain | W3C validator |