MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvrescnv Structured version   Visualization version   GIF version

Theorem cnvrescnv 6019
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
cnvrescnv (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))

Proof of Theorem cnvrescnv
StepHypRef Expression
1 df-res 5531 . . 3 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
21cnveqi 5709 . 2 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
3 cnvin 5970 . 2 (𝑅 ∩ (𝐵 × V)) = (𝑅(𝐵 × V))
4 cnvcnv 6016 . . . 4 𝑅 = (𝑅 ∩ (V × V))
5 cnvxp 5981 . . . 4 (𝐵 × V) = (V × 𝐵)
64, 5ineq12i 4137 . . 3 (𝑅(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵))
7 inass 4146 . . 3 ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵)))
8 inxp 5667 . . . . 5 ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵))
9 inv1 4302 . . . . . . 7 (V ∩ V) = V
109eqcomi 2807 . . . . . 6 V = (V ∩ V)
11 ssv 3939 . . . . . . . 8 𝐵 ⊆ V
12 ssid 3937 . . . . . . . 8 𝐵𝐵
1311, 12ssini 4158 . . . . . . 7 𝐵 ⊆ (V ∩ 𝐵)
14 inss2 4156 . . . . . . 7 (V ∩ 𝐵) ⊆ 𝐵
1513, 14eqssi 3931 . . . . . 6 𝐵 = (V ∩ 𝐵)
1610, 15xpeq12i 5547 . . . . 5 (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵))
178, 16eqtr4i 2824 . . . 4 ((V × V) ∩ (V × 𝐵)) = (V × 𝐵)
1817ineq2i 4136 . . 3 (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵))
196, 7, 183eqtri 2825 . 2 (𝑅(𝐵 × V)) = (𝑅 ∩ (V × 𝐵))
202, 3, 193eqtri 2825 1 (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3441  cin 3880   × cxp 5517  ccnv 5518  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-res 5531
This theorem is referenced by:  fressupp  30448
  Copyright terms: Public domain W3C validator