MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvrescnv Structured version   Visualization version   GIF version

Theorem cnvrescnv 6217
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
cnvrescnv (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))

Proof of Theorem cnvrescnv
StepHypRef Expression
1 df-res 5701 . . 3 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
21cnveqi 5888 . 2 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
3 cnvin 6167 . 2 (𝑅 ∩ (𝐵 × V)) = (𝑅(𝐵 × V))
4 cnvcnv 6214 . . . 4 𝑅 = (𝑅 ∩ (V × V))
5 cnvxp 6179 . . . 4 (𝐵 × V) = (V × 𝐵)
64, 5ineq12i 4226 . . 3 (𝑅(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵))
7 inass 4236 . . 3 ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵)))
8 inxp 5845 . . . . 5 ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵))
9 inv1 4404 . . . . . . 7 (V ∩ V) = V
109eqcomi 2744 . . . . . 6 V = (V ∩ V)
11 ssv 4020 . . . . . . . 8 𝐵 ⊆ V
12 ssid 4018 . . . . . . . 8 𝐵𝐵
1311, 12ssini 4248 . . . . . . 7 𝐵 ⊆ (V ∩ 𝐵)
14 inss2 4246 . . . . . . 7 (V ∩ 𝐵) ⊆ 𝐵
1513, 14eqssi 4012 . . . . . 6 𝐵 = (V ∩ 𝐵)
1610, 15xpeq12i 5717 . . . . 5 (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵))
178, 16eqtr4i 2766 . . . 4 ((V × V) ∩ (V × 𝐵)) = (V × 𝐵)
1817ineq2i 4225 . . 3 (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵))
196, 7, 183eqtri 2767 . 2 (𝑅(𝐵 × V)) = (𝑅 ∩ (V × 𝐵))
202, 3, 193eqtri 2767 1 (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  cin 3962   × cxp 5687  ccnv 5688  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-res 5701
This theorem is referenced by:  fressupp  32703
  Copyright terms: Public domain W3C validator