MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvrescnv Structured version   Visualization version   GIF version

Theorem cnvrescnv 6188
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
cnvrescnv (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))

Proof of Theorem cnvrescnv
StepHypRef Expression
1 df-res 5681 . . 3 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
21cnveqi 5868 . 2 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
3 cnvin 6138 . 2 (𝑅 ∩ (𝐵 × V)) = (𝑅(𝐵 × V))
4 cnvcnv 6185 . . . 4 𝑅 = (𝑅 ∩ (V × V))
5 cnvxp 6150 . . . 4 (𝐵 × V) = (V × 𝐵)
64, 5ineq12i 4205 . . 3 (𝑅(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵))
7 inass 4214 . . 3 ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵)))
8 inxp 5825 . . . . 5 ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵))
9 inv1 4389 . . . . . . 7 (V ∩ V) = V
109eqcomi 2735 . . . . . 6 V = (V ∩ V)
11 ssv 4001 . . . . . . . 8 𝐵 ⊆ V
12 ssid 3999 . . . . . . . 8 𝐵𝐵
1311, 12ssini 4226 . . . . . . 7 𝐵 ⊆ (V ∩ 𝐵)
14 inss2 4224 . . . . . . 7 (V ∩ 𝐵) ⊆ 𝐵
1513, 14eqssi 3993 . . . . . 6 𝐵 = (V ∩ 𝐵)
1610, 15xpeq12i 5697 . . . . 5 (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵))
178, 16eqtr4i 2757 . . . 4 ((V × V) ∩ (V × 𝐵)) = (V × 𝐵)
1817ineq2i 4204 . . 3 (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵))
196, 7, 183eqtri 2758 . 2 (𝑅(𝐵 × V)) = (𝑅 ∩ (V × 𝐵))
202, 3, 193eqtri 2758 1 (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3468  cin 3942   × cxp 5667  ccnv 5668  cres 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-res 5681
This theorem is referenced by:  fressupp  32417
  Copyright terms: Public domain W3C validator