MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvrescnv Structured version   Visualization version   GIF version

Theorem cnvrescnv 6052
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.)
Assertion
Ref Expression
cnvrescnv (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))

Proof of Theorem cnvrescnv
StepHypRef Expression
1 df-res 5567 . . 3 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
21cnveqi 5745 . 2 (𝑅𝐵) = (𝑅 ∩ (𝐵 × V))
3 cnvin 6003 . 2 (𝑅 ∩ (𝐵 × V)) = (𝑅(𝐵 × V))
4 cnvcnv 6049 . . . 4 𝑅 = (𝑅 ∩ (V × V))
5 cnvxp 6014 . . . 4 (𝐵 × V) = (V × 𝐵)
64, 5ineq12i 4187 . . 3 (𝑅(𝐵 × V)) = ((𝑅 ∩ (V × V)) ∩ (V × 𝐵))
7 inass 4196 . . 3 ((𝑅 ∩ (V × V)) ∩ (V × 𝐵)) = (𝑅 ∩ ((V × V) ∩ (V × 𝐵)))
8 inxp 5703 . . . . 5 ((V × V) ∩ (V × 𝐵)) = ((V ∩ V) × (V ∩ 𝐵))
9 inv1 4348 . . . . . . 7 (V ∩ V) = V
109eqcomi 2830 . . . . . 6 V = (V ∩ V)
11 ssv 3991 . . . . . . . 8 𝐵 ⊆ V
12 ssid 3989 . . . . . . . 8 𝐵𝐵
1311, 12ssini 4208 . . . . . . 7 𝐵 ⊆ (V ∩ 𝐵)
14 inss2 4206 . . . . . . 7 (V ∩ 𝐵) ⊆ 𝐵
1513, 14eqssi 3983 . . . . . 6 𝐵 = (V ∩ 𝐵)
1610, 15xpeq12i 5583 . . . . 5 (V × 𝐵) = ((V ∩ V) × (V ∩ 𝐵))
178, 16eqtr4i 2847 . . . 4 ((V × V) ∩ (V × 𝐵)) = (V × 𝐵)
1817ineq2i 4186 . . 3 (𝑅 ∩ ((V × V) ∩ (V × 𝐵))) = (𝑅 ∩ (V × 𝐵))
196, 7, 183eqtri 2848 . 2 (𝑅(𝐵 × V)) = (𝑅 ∩ (V × 𝐵))
202, 3, 193eqtri 2848 1 (𝑅𝐵) = (𝑅 ∩ (V × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3494  cin 3935   × cxp 5553  ccnv 5554  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-res 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator