MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvdif Structured version   Visualization version   GIF version

Theorem cnvdif 5996
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvdif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5961 . 2 Rel (𝐴𝐵)
2 difss 4107 . . 3 (𝐴𝐵) ⊆ 𝐴
3 relcnv 5961 . . 3 Rel 𝐴
4 relss 5650 . . 3 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
52, 3, 4mp2 9 . 2 Rel (𝐴𝐵)
6 eldif 3945 . . 3 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
7 vex 3497 . . . 4 𝑥 ∈ V
8 vex 3497 . . . 4 𝑦 ∈ V
97, 8opelcnv 5746 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
10 eldif 3945 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
117, 8opelcnv 5746 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
127, 8opelcnv 5746 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1312notbii 322 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1411, 13anbi12i 628 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
1510, 14bitri 277 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
166, 9, 153bitr4i 305 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵))
171, 5, 16eqrelriiv 5657 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wcel 2110  cdif 3932  wss 3935  cop 4566  ccnv 5548  Rel wrel 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-cnv 5557
This theorem is referenced by:  cnvin  5997  gtiso  30430  mthmpps  32824  cnvnonrel  39941
  Copyright terms: Public domain W3C validator