MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvdif Structured version   Visualization version   GIF version

Theorem cnvdif 6163
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvdif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6122 . 2 Rel (𝐴𝐵)
2 difss 4136 . . 3 (𝐴𝐵) ⊆ 𝐴
3 relcnv 6122 . . 3 Rel 𝐴
4 relss 5791 . . 3 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
52, 3, 4mp2 9 . 2 Rel (𝐴𝐵)
6 eldif 3961 . . 3 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
7 vex 3484 . . . 4 𝑥 ∈ V
8 vex 3484 . . . 4 𝑦 ∈ V
97, 8opelcnv 5892 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
10 eldif 3961 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
117, 8opelcnv 5892 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
127, 8opelcnv 5892 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1312notbii 320 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1411, 13anbi12i 628 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
1510, 14bitri 275 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
166, 9, 153bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵))
171, 5, 16eqrelriiv 5800 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  cdif 3948  wss 3951  cop 4632  ccnv 5684  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  cnvin  6164  gtiso  32710  gsumhashmul  33064  mthmpps  35587  cnvnonrel  43601
  Copyright terms: Public domain W3C validator