![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvdif | Structured version Visualization version GIF version |
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvdif | ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . 2 ⊢ Rel ◡(𝐴 ∖ 𝐵) | |
2 | difss 4159 | . . 3 ⊢ (◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 | |
3 | relcnv 6134 | . . 3 ⊢ Rel ◡𝐴 | |
4 | relss 5805 | . . 3 ⊢ ((◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 → (Rel ◡𝐴 → Rel (◡𝐴 ∖ ◡𝐵))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel (◡𝐴 ∖ ◡𝐵) |
6 | eldif 3986 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
7 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | vex 3492 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opelcnv 5906 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵)) |
10 | eldif 3986 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵)) | |
11 | 7, 8 | opelcnv 5906 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) |
12 | 7, 8 | opelcnv 5906 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) |
13 | 12 | notbii 320 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵) |
14 | 11, 13 | anbi12i 627 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
15 | 10, 14 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
16 | 6, 9, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵)) |
17 | 1, 5, 16 | eqrelriiv 5814 | 1 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 〈cop 4654 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: cnvin 6176 gtiso 32712 gsumhashmul 33040 mthmpps 35550 cnvnonrel 43550 |
Copyright terms: Public domain | W3C validator |