MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvdif Structured version   Visualization version   GIF version

Theorem cnvdif 6143
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvdif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6103 . 2 Rel (𝐴𝐵)
2 difss 4131 . . 3 (𝐴𝐵) ⊆ 𝐴
3 relcnv 6103 . . 3 Rel 𝐴
4 relss 5781 . . 3 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
52, 3, 4mp2 9 . 2 Rel (𝐴𝐵)
6 eldif 3958 . . 3 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
7 vex 3478 . . . 4 𝑥 ∈ V
8 vex 3478 . . . 4 𝑦 ∈ V
97, 8opelcnv 5881 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
10 eldif 3958 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
117, 8opelcnv 5881 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
127, 8opelcnv 5881 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1312notbii 319 . . . . 5 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1411, 13anbi12i 627 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
1510, 14bitri 274 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵))
166, 9, 153bitr4i 302 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵))
171, 5, 16eqrelriiv 5790 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  cdif 3945  wss 3948  cop 4634  ccnv 5675  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684
This theorem is referenced by:  cnvin  6144  gtiso  31917  gsumhashmul  32203  mthmpps  34568  cnvnonrel  42329
  Copyright terms: Public domain W3C validator