![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvdif | Structured version Visualization version GIF version |
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvdif | ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6103 | . 2 ⊢ Rel ◡(𝐴 ∖ 𝐵) | |
2 | difss 4131 | . . 3 ⊢ (◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 | |
3 | relcnv 6103 | . . 3 ⊢ Rel ◡𝐴 | |
4 | relss 5781 | . . 3 ⊢ ((◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 → (Rel ◡𝐴 → Rel (◡𝐴 ∖ ◡𝐵))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel (◡𝐴 ∖ ◡𝐵) |
6 | eldif 3958 | . . 3 ⊢ (⟨𝑦, 𝑥⟩ ∈ (𝐴 ∖ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) | |
7 | vex 3478 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | vex 3478 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opelcnv 5881 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡(𝐴 ∖ 𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 ∖ 𝐵)) |
10 | eldif 3958 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵)) | |
11 | 7, 8 | opelcnv 5881 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴) |
12 | 7, 8 | opelcnv 5881 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵) |
13 | 12 | notbii 319 | . . . . 5 ⊢ (¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵) |
14 | 11, 13 | anbi12i 627 | . . . 4 ⊢ ((⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) |
15 | 10, 14 | bitri 274 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) |
16 | 6, 9, 15 | 3bitr4i 302 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡(𝐴 ∖ 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵)) |
17 | 1, 5, 16 | eqrelriiv 5790 | 1 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 ⊆ wss 3948 ⟨cop 4634 ◡ccnv 5675 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: cnvin 6144 gtiso 31917 gsumhashmul 32203 mthmpps 34568 cnvnonrel 42329 |
Copyright terms: Public domain | W3C validator |