| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvdif | Structured version Visualization version GIF version | ||
| Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnvdif | ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6055 | . 2 ⊢ Rel ◡(𝐴 ∖ 𝐵) | |
| 2 | difss 4087 | . . 3 ⊢ (◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 | |
| 3 | relcnv 6055 | . . 3 ⊢ Rel ◡𝐴 | |
| 4 | relss 5725 | . . 3 ⊢ ((◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 → (Rel ◡𝐴 → Rel (◡𝐴 ∖ ◡𝐵))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel (◡𝐴 ∖ ◡𝐵) |
| 6 | eldif 3913 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
| 7 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | opelcnv 5824 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵)) |
| 10 | eldif 3913 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵)) | |
| 11 | 7, 8 | opelcnv 5824 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) |
| 12 | 7, 8 | opelcnv 5824 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) |
| 13 | 12 | notbii 320 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵) |
| 14 | 11, 13 | anbi12i 628 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
| 15 | 10, 14 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
| 16 | 6, 9, 15 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵)) |
| 17 | 1, 5, 16 | eqrelriiv 5733 | 1 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 〈cop 4583 ◡ccnv 5618 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: cnvin 6093 gtiso 32644 gsumhashmul 33015 mthmpps 35565 cnvnonrel 43571 |
| Copyright terms: Public domain | W3C validator |