MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopabOLD Structured version   Visualization version   GIF version

Theorem cnvopabOLD 6084
Description: Obsolete version of cnvopab 6083 as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnvopabOLD {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopabOLD
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6052 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopabv 5760 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 vopelopabsb 5467 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
4 sbcom2 2176 . . . 4 ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
53, 4bitri 275 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
6 vex 3440 . . . 4 𝑧 ∈ V
7 vex 3440 . . . 4 𝑤 ∈ V
86, 7opelcnv 5820 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
9 vopelopabsb 5467 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
105, 8, 93bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
111, 2, 10eqrelriiv 5729 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  [wsb 2067  wcel 2111  cop 4579  {copab 5151  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator