MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvopabOLD Structured version   Visualization version   GIF version

Theorem cnvopabOLD 6158
Description: Obsolete version of cnvopab 6157 as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnvopabOLD {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cnvopabOLD
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6122 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relopabv 5831 . 2 Rel {⟨𝑦, 𝑥⟩ ∣ 𝜑}
3 vopelopabsb 5534 . . . 4 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑)
4 sbcom2 2173 . . . 4 ([𝑤 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
53, 4bitri 275 . . 3 (⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
6 vex 3484 . . . 4 𝑧 ∈ V
7 vex 3484 . . . 4 𝑤 ∈ V
86, 7opelcnv 5892 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑤, 𝑧⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
9 vopelopabsb 5534 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑)
105, 8, 93bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑦, 𝑥⟩ ∣ 𝜑})
111, 2, 10eqrelriiv 5800 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  [wsb 2064  wcel 2108  cop 4632  {copab 5205  ccnv 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator