MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcnv Structured version   Visualization version   GIF version

Theorem mptcnv 6159
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
Hypothesis
Ref Expression
mptcnv.1 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
Assertion
Ref Expression
mptcnv (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝐶   𝑥,𝐷   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem mptcnv
StepHypRef Expression
1 mptcnv.1 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))
21opabbidv 5209 . 2 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)})
3 df-mpt 5226 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 5885 . . 3 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 6157 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2765 . 2 (𝑥𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
7 df-mpt 5226 . 2 (𝑦𝐶𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶𝑥 = 𝐷)}
82, 6, 73eqtr4g 2802 1 (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {copab 5205  cmpt 5225  ccnv 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  nvocnv  7301  mptcnfimad  8011  mptfzshft  15814  pt1hmeo  23814  ballotlemrinv  34536  dssmapnvod  44033
  Copyright terms: Public domain W3C validator