Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptcnv | Structured version Visualization version GIF version |
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
Ref | Expression |
---|---|
mptcnv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) |
Ref | Expression |
---|---|
mptcnv | ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcnv.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) | |
2 | 1 | opabbidv 5155 | . 2 ⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)}) |
3 | df-mpt 5173 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 3 | cnveqi 5810 | . . 3 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | cnvopab 6071 | . . 3 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 4, 5 | eqtri 2764 | . 2 ⊢ ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | df-mpt 5173 | . 2 ⊢ (𝑦 ∈ 𝐶 ↦ 𝐷) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷)} | |
8 | 2, 6, 7 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {copab 5151 ↦ cmpt 5172 ◡ccnv 5613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-mpt 5173 df-xp 5620 df-rel 5621 df-cnv 5622 |
This theorem is referenced by: nvocnv 7203 mptfzshft 15581 pt1hmeo 23055 ballotlemrinv 32741 dssmapnvod 41938 |
Copyright terms: Public domain | W3C validator |