Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomorn Structured version   Visualization version   GIF version

Theorem alrmomorn 38318
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
alrmomorn (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)

Proof of Theorem alrmomorn
StepHypRef Expression
1 df-rmo 3363 . . 3 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
2 cnvresrn 38308 . . . . . 6 (𝑅 ↾ ran 𝑅) = 𝑅
32breqi 5129 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥𝑦𝑅𝑥)
4 brres 5984 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥)))
54elv 3468 . . . . . 6 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥))
6 brcnvg 5870 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3470 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi2i 623 . . . . . 6 ((𝑦 ∈ ran 𝑅𝑦𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
95, 8bitri 275 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
103, 9, 73bitr3i 301 . . . 4 ((𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦)
1110mobii 2546 . . 3 (∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦)
121, 11bitri 275 . 2 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦)
1312albii 1818 1 (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1537  wcel 2107  ∃*wmo 2536  ∃*wrmo 3362  Vcvv 3463   class class class wbr 5123  ccnv 5664  ran crn 5666  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677
This theorem is referenced by:  ineccnvmo2  38320
  Copyright terms: Public domain W3C validator