Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomorn Structured version   Visualization version   GIF version

Theorem alrmomorn 38340
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
alrmomorn (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)

Proof of Theorem alrmomorn
StepHypRef Expression
1 df-rmo 3354 . . 3 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
2 cnvresrn 38330 . . . . . 6 (𝑅 ↾ ran 𝑅) = 𝑅
32breqi 5113 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥𝑦𝑅𝑥)
4 brres 5957 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥)))
54elv 3452 . . . . . 6 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥))
6 brcnvg 5843 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3454 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi2i 623 . . . . . 6 ((𝑦 ∈ ran 𝑅𝑦𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
95, 8bitri 275 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
103, 9, 73bitr3i 301 . . . 4 ((𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦)
1110mobii 2541 . . 3 (∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦)
121, 11bitri 275 . 2 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦)
1312albii 1819 1 (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  wcel 2109  ∃*wmo 2531  ∃*wrmo 3353  Vcvv 3447   class class class wbr 5107  ccnv 5637  ran crn 5639  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  ineccnvmo2  38342
  Copyright terms: Public domain W3C validator