Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomorn Structured version   Visualization version   GIF version

Theorem alrmomorn 37531
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
alrmomorn (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)

Proof of Theorem alrmomorn
StepHypRef Expression
1 df-rmo 3375 . . 3 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
2 cnvresrn 37521 . . . . . 6 (𝑅 ↾ ran 𝑅) = 𝑅
32breqi 5154 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥𝑦𝑅𝑥)
4 brres 5988 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥)))
54elv 3479 . . . . . 6 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥))
6 brcnvg 5879 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3481 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi2i 622 . . . . . 6 ((𝑦 ∈ ran 𝑅𝑦𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
95, 8bitri 275 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
103, 9, 73bitr3i 301 . . . 4 ((𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦)
1110mobii 2541 . . 3 (∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦)
121, 11bitri 275 . 2 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦)
1312albii 1820 1 (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1538  wcel 2105  ∃*wmo 2531  ∃*wrmo 3374  Vcvv 3473   class class class wbr 5148  ccnv 5675  ran crn 5677  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rmo 3375  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by:  ineccnvmo2  37533
  Copyright terms: Public domain W3C validator