Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomorn | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
Ref | Expression |
---|---|
alrmomorn | ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3071 | . . 3 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) | |
2 | cnvresrn 36483 | . . . . . 6 ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | |
3 | 2 | breqi 5080 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ 𝑦◡𝑅𝑥) |
4 | brres 5898 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥))) | |
5 | 4 | elv 3438 | . . . . . 6 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥)) |
6 | brcnvg 5788 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
7 | 6 | el2v 3440 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
9 | 5, 8 | bitri 274 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
10 | 3, 9, 7 | 3bitr3i 301 | . . . 4 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦) |
11 | 10 | mobii 2548 | . . 3 ⊢ (∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦) |
12 | 1, 11 | bitri 274 | . 2 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦) |
13 | 12 | albii 1822 | 1 ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 Vcvv 3432 class class class wbr 5074 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: ineccnvmo2 36492 |
Copyright terms: Public domain | W3C validator |