![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomorn | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
Ref | Expression |
---|---|
alrmomorn | ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3388 | . . 3 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) | |
2 | cnvresrn 38306 | . . . . . 6 ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | |
3 | 2 | breqi 5172 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ 𝑦◡𝑅𝑥) |
4 | brres 6018 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥))) | |
5 | 4 | elv 3493 | . . . . . 6 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥)) |
6 | brcnvg 5904 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
7 | 6 | el2v 3495 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | anbi2i 622 | . . . . . 6 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
9 | 5, 8 | bitri 275 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
10 | 3, 9, 7 | 3bitr3i 301 | . . . 4 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦) |
11 | 10 | mobii 2551 | . . 3 ⊢ (∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦) |
12 | 1, 11 | bitri 275 | . 2 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦) |
13 | 12 | albii 1817 | 1 ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∃*wmo 2541 ∃*wrmo 3387 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: ineccnvmo2 38318 |
Copyright terms: Public domain | W3C validator |