Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomorn Structured version   Visualization version   GIF version

Theorem alrmomorn 38389
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
alrmomorn (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)

Proof of Theorem alrmomorn
StepHypRef Expression
1 df-rmo 3346 . . 3 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
2 cnvresrn 38379 . . . . . 6 (𝑅 ↾ ran 𝑅) = 𝑅
32breqi 5095 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥𝑦𝑅𝑥)
4 brres 5934 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥)))
54elv 3441 . . . . . 6 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑦𝑅𝑥))
6 brcnvg 5818 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3443 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi2i 623 . . . . . 6 ((𝑦 ∈ ran 𝑅𝑦𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
95, 8bitri 275 . . . . 5 (𝑦(𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅𝑥𝑅𝑦))
103, 9, 73bitr3i 301 . . . 4 ((𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦)
1110mobii 2543 . . 3 (∃*𝑦(𝑦 ∈ ran 𝑅𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦)
121, 11bitri 275 . 2 (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦)
1312albii 1820 1 (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539  wcel 2111  ∃*wmo 2533  ∃*wrmo 3345  Vcvv 3436   class class class wbr 5089  ccnv 5613  ran crn 5615  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  ineccnvmo2  38391
  Copyright terms: Public domain W3C validator