| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomorn | Structured version Visualization version GIF version | ||
| Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| alrmomorn | ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3356 | . . 3 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) | |
| 2 | cnvresrn 38325 | . . . . . 6 ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | |
| 3 | 2 | breqi 5115 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ 𝑦◡𝑅𝑥) |
| 4 | brres 5959 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥))) | |
| 5 | 4 | elv 3455 | . . . . . 6 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥)) |
| 6 | brcnvg 5845 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
| 7 | 6 | el2v 3457 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 8 | 7 | anbi2i 623 | . . . . . 6 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
| 9 | 5, 8 | bitri 275 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
| 10 | 3, 9, 7 | 3bitr3i 301 | . . . 4 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦) |
| 11 | 10 | mobii 2542 | . . 3 ⊢ (∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦) |
| 12 | 1, 11 | bitri 275 | . 2 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦) |
| 13 | 12 | albii 1819 | 1 ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2532 ∃*wrmo 3355 Vcvv 3450 class class class wbr 5109 ◡ccnv 5639 ran crn 5641 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 |
| This theorem is referenced by: ineccnvmo2 38337 |
| Copyright terms: Public domain | W3C validator |