![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomorn | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
Ref | Expression |
---|---|
alrmomorn | ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3375 | . . 3 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) | |
2 | cnvresrn 37521 | . . . . . 6 ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | |
3 | 2 | breqi 5154 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ 𝑦◡𝑅𝑥) |
4 | brres 5988 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥))) | |
5 | 4 | elv 3479 | . . . . . 6 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥)) |
6 | brcnvg 5879 | . . . . . . . 8 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
7 | 6 | el2v 3481 | . . . . . . 7 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | anbi2i 622 | . . . . . 6 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑦◡𝑅𝑥) ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
9 | 5, 8 | bitri 275 | . . . . 5 ⊢ (𝑦(◡𝑅 ↾ ran 𝑅)𝑥 ↔ (𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦)) |
10 | 3, 9, 7 | 3bitr3i 301 | . . . 4 ⊢ ((𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ 𝑥𝑅𝑦) |
11 | 10 | mobii 2541 | . . 3 ⊢ (∃*𝑦(𝑦 ∈ ran 𝑅 ∧ 𝑥𝑅𝑦) ↔ ∃*𝑦 𝑥𝑅𝑦) |
12 | 1, 11 | bitri 275 | . 2 ⊢ (∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∃*𝑦 𝑥𝑅𝑦) |
13 | 12 | albii 1820 | 1 ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1538 ∈ wcel 2105 ∃*wmo 2531 ∃*wrmo 3374 Vcvv 3473 class class class wbr 5148 ◡ccnv 5675 ran crn 5677 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 |
This theorem is referenced by: ineccnvmo2 37533 |
Copyright terms: Public domain | W3C validator |