Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coepr Structured version   Visualization version   GIF version

Theorem coepr 35818
Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion
Ref Expression
coepr (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem coepr
StepHypRef Expression
1 coep.1 . . . . . 6 𝐴 ∈ V
2 vex 3441 . . . . . 6 𝑥 ∈ V
31, 2brcnv 5826 . . . . 5 (𝐴 E 𝑥𝑥 E 𝐴)
41epeli 5521 . . . . 5 (𝑥 E 𝐴𝑥𝐴)
53, 4bitri 275 . . . 4 (𝐴 E 𝑥𝑥𝐴)
65anbi1i 624 . . 3 ((𝐴 E 𝑥𝑥𝑅𝐵) ↔ (𝑥𝐴𝑥𝑅𝐵))
76exbii 1849 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
8 coep.2 . . 3 𝐵 ∈ V
91, 8brco 5814 . 2 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵))
10 df-rex 3058 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
117, 9, 103bitr4i 303 1 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2113  wrex 3057  Vcvv 3437   class class class wbr 5093   E cep 5518  ccnv 5618  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-eprel 5519  df-cnv 5627  df-co 5628
This theorem is referenced by:  elfuns  35978  brub  36019
  Copyright terms: Public domain W3C validator