| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coepr | Structured version Visualization version GIF version | ||
| Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| coep.1 | ⊢ 𝐴 ∈ V |
| coep.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coepr | ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5846 | . . . . 5 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 E 𝐴) |
| 4 | 1 | epeli 5540 | . . . . 5 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
| 7 | 6 | exbii 1848 | . 2 ⊢ (∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
| 8 | coep.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 9 | 1, 8 | brco 5834 | . 2 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵)) |
| 10 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
| 11 | 7, 9, 10 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 E cep 5537 ◡ccnv 5637 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-cnv 5646 df-co 5647 |
| This theorem is referenced by: elfuns 35903 brub 35942 |
| Copyright terms: Public domain | W3C validator |