Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coepr Structured version   Visualization version   GIF version

Theorem coepr 33626
Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion
Ref Expression
coepr (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem coepr
StepHypRef Expression
1 coep.1 . . . . . 6 𝐴 ∈ V
2 vex 3426 . . . . . 6 𝑥 ∈ V
31, 2brcnv 5780 . . . . 5 (𝐴 E 𝑥𝑥 E 𝐴)
41epeli 5488 . . . . 5 (𝑥 E 𝐴𝑥𝐴)
53, 4bitri 274 . . . 4 (𝐴 E 𝑥𝑥𝐴)
65anbi1i 623 . . 3 ((𝐴 E 𝑥𝑥𝑅𝐵) ↔ (𝑥𝐴𝑥𝑅𝐵))
76exbii 1851 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
8 coep.2 . . 3 𝐵 ∈ V
91, 8brco 5768 . 2 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵))
10 df-rex 3069 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
117, 9, 103bitr4i 302 1 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wrex 3064  Vcvv 3422   class class class wbr 5070   E cep 5485  ccnv 5579  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-cnv 5588  df-co 5589
This theorem is referenced by:  elfuns  34144  brub  34183
  Copyright terms: Public domain W3C validator