Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coepr Structured version   Visualization version   GIF version

Theorem coepr 32548
Description: Composition with the converse of epsilon. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
coep.1 𝐴 ∈ V
coep.2 𝐵 ∈ V
Assertion
Ref Expression
coepr (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem coepr
StepHypRef Expression
1 coep.1 . . . . . 6 𝐴 ∈ V
2 vex 3420 . . . . . 6 𝑥 ∈ V
31, 2brcnv 5607 . . . . 5 (𝐴 E 𝑥𝑥 E 𝐴)
41epeli 5324 . . . . 5 (𝑥 E 𝐴𝑥𝐴)
53, 4bitri 267 . . . 4 (𝐴 E 𝑥𝑥𝐴)
65anbi1i 615 . . 3 ((𝐴 E 𝑥𝑥𝑅𝐵) ↔ (𝑥𝐴𝑥𝑅𝐵))
76exbii 1811 . 2 (∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
8 coep.2 . . 3 𝐵 ∈ V
91, 8brco 5595 . 2 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥(𝐴 E 𝑥𝑥𝑅𝐵))
10 df-rex 3096 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
117, 9, 103bitr4i 295 1 (𝐴(𝑅 E )𝐵 ↔ ∃𝑥𝐴 𝑥𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  wex 1743  wcel 2051  wrex 3091  Vcvv 3417   class class class wbr 4934   E cep 5320  ccnv 5410  ccom 5415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-br 4935  df-opab 4997  df-eprel 5321  df-cnv 5419  df-co 5420
This theorem is referenced by:  elfuns  32937  brub  32976
  Copyright terms: Public domain W3C validator