![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coepr | Structured version Visualization version GIF version |
Description: Composition with the converse of epsilon. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
coep.1 | ⊢ 𝐴 ∈ V |
coep.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coepr | ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coep.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | vex 3420 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5607 | . . . . 5 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 E 𝐴) |
4 | 1 | epeli 5324 | . . . . 5 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
5 | 3, 4 | bitri 267 | . . . 4 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 ∈ 𝐴) |
6 | 5 | anbi1i 615 | . . 3 ⊢ ((𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
7 | 6 | exbii 1811 | . 2 ⊢ (∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
8 | coep.2 | . . 3 ⊢ 𝐵 ∈ V | |
9 | 1, 8 | brco 5595 | . 2 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵)) |
10 | df-rex 3096 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
11 | 7, 9, 10 | 3bitr4i 295 | 1 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∃wex 1743 ∈ wcel 2051 ∃wrex 3091 Vcvv 3417 class class class wbr 4934 E cep 5320 ◡ccnv 5410 ∘ ccom 5415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pr 5190 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-br 4935 df-opab 4997 df-eprel 5321 df-cnv 5419 df-co 5420 |
This theorem is referenced by: elfuns 32937 brub 32976 |
Copyright terms: Public domain | W3C validator |