| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coepr | Structured version Visualization version GIF version | ||
| Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| coep.1 | ⊢ 𝐴 ∈ V |
| coep.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coepr | ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5873 | . . . . 5 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 E 𝐴) |
| 4 | 1 | epeli 5566 | . . . . 5 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
| 7 | 6 | exbii 1847 | . 2 ⊢ (∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
| 8 | coep.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 9 | 1, 8 | brco 5861 | . 2 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵)) |
| 10 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
| 11 | 7, 9, 10 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 E cep 5563 ◡ccnv 5664 ∘ ccom 5669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-eprel 5564 df-cnv 5673 df-co 5674 |
| This theorem is referenced by: elfuns 35875 brub 35914 |
| Copyright terms: Public domain | W3C validator |