Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coepr | Structured version Visualization version GIF version |
Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
coep.1 | ⊢ 𝐴 ∈ V |
coep.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coepr | ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coep.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5791 | . . . . 5 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 E 𝐴) |
4 | 1 | epeli 5497 | . . . . 5 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
5 | 3, 4 | bitri 274 | . . . 4 ⊢ (𝐴◡ E 𝑥 ↔ 𝑥 ∈ 𝐴) |
6 | 5 | anbi1i 624 | . . 3 ⊢ ((𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
7 | 6 | exbii 1850 | . 2 ⊢ (∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) |
8 | coep.2 | . . 3 ⊢ 𝐵 ∈ V | |
9 | 1, 8 | brco 5779 | . 2 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥(𝐴◡ E 𝑥 ∧ 𝑥𝑅𝐵)) |
10 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
11 | 7, 9, 10 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 E cep 5494 ◡ccnv 5588 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-cnv 5597 df-co 5598 |
This theorem is referenced by: elfuns 34217 brub 34256 |
Copyright terms: Public domain | W3C validator |