MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brco Structured version   Visualization version   GIF version

Theorem brco 5824
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
brco (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2 𝐴 ∈ V
2 opelco.2 . 2 𝐵 ∈ V
3 brcog 5820 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3444   class class class wbr 5102  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-co 5640
This theorem is referenced by:  opelco  5825  cnvco  5839  cotrg  6069  cotrgOLD  6070  resco  6211  imaco  6212  rnco  6213  coass  6226  dfpo2  6257  dffv2  6938  foeqcnvco  7257  f1eqcocnv  7258  ttrclss  9649  rtrclreclem3  15002  imasleval  17480  ustuqtop4  24108  metustexhalf  24420  dftr6  35711  coep  35712  coepr  35713  brtxp  35841  pprodss4v  35845  brpprod  35846  sscoid  35874  elfuns  35876  brimg  35898  brapply  35899  brcup  35900  brcap  35901  brsuccf  35902  funpartlem  35903  brrestrict  35910  dfrecs2  35911  dfrdg4  35912  cnvssco  43568  brpermmodel  44966  xpco2  48818
  Copyright terms: Public domain W3C validator