MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brco Structured version   Visualization version   GIF version

Theorem brco 5868
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
brco (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2 𝐴 ∈ V
2 opelco.2 . 2 𝐵 ∈ V
3 brcog 5864 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
41, 2, 3mp2an 690 1 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1781  wcel 2106  Vcvv 3474   class class class wbr 5147  ccom 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-co 5684
This theorem is referenced by:  opelco  5869  cnvco  5883  cotrg  6105  cotrgOLD  6106  resco  6246  imaco  6247  rnco  6248  coass  6261  dfpo2  6292  dffv2  6983  foeqcnvco  7294  f1eqcocnv  7295  f1eqcocnvOLD  7296  ttrclss  9711  rtrclreclem3  15003  imasleval  17483  ustuqtop4  23740  metustexhalf  24056  dftr6  34709  coep  34710  coepr  34711  brtxp  34840  pprodss4v  34844  brpprod  34845  sscoid  34873  elfuns  34875  brimg  34897  brapply  34898  brcup  34899  brcap  34900  brsuccf  34901  funpartlem  34902  brrestrict  34909  dfrecs2  34910  dfrdg4  34911  cnvssco  42342
  Copyright terms: Public domain W3C validator