Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version |
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | ⊢ 𝐴 ∈ V |
opelco.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcog 5795 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 ∘ ccom 5611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-co 5616 |
This theorem is referenced by: opelco 5800 cnvco 5814 cotrg 6034 cotrgOLD 6035 resco 6175 imaco 6176 rnco 6177 coass 6190 dfpo2 6221 dffv2 6902 foeqcnvco 7211 f1eqcocnv 7212 f1eqcocnvOLD 7213 ttrclss 9549 rtrclreclem3 14843 imasleval 17322 ustuqtop4 23468 metustexhalf 23784 dftr6 33818 coep 33819 coepr 33820 brtxp 34240 pprodss4v 34244 brpprod 34245 sscoid 34273 elfuns 34275 brimg 34297 brapply 34298 brcup 34299 brcap 34300 brsuccf 34301 funpartlem 34302 brrestrict 34309 dfrecs2 34310 dfrdg4 34311 cnvssco 41435 |
Copyright terms: Public domain | W3C validator |