MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brco Structured version   Visualization version   GIF version

Theorem brco 5809
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
brco (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2 𝐴 ∈ V
2 opelco.2 . 2 𝐵 ∈ V
3 brcog 5805 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5089  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-co 5623
This theorem is referenced by:  opelco  5810  cnvco  5824  cotrg  6057  resco  6197  imaco  6198  rnco  6199  rncoOLD  6200  coass  6213  dfpo2  6243  dffv2  6917  foeqcnvco  7234  f1eqcocnv  7235  ttrclss  9610  rtrclreclem3  14967  imasleval  17445  ustuqtop4  24159  metustexhalf  24471  dftr6  35795  coep  35796  coepr  35797  brtxp  35922  pprodss4v  35926  brpprod  35927  sscoid  35955  elfuns  35957  brimg  35979  brapply  35980  brcup  35981  brcap  35982  brsuccf  35984  funpartlem  35986  brrestrict  35993  dfrecs2  35994  dfrdg4  35995  cnvssco  43709  brpermmodel  45106  xpco2  48967
  Copyright terms: Public domain W3C validator