Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version |
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | ⊢ 𝐴 ∈ V |
opelco.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcog 5764 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: opelco 5769 cnvco 5783 resco 6143 imaco 6144 rnco 6145 coass 6158 dfpo2 6188 dffv2 6845 foeqcnvco 7152 f1eqcocnv 7153 f1eqcocnvOLD 7154 rtrclreclem3 14699 imasleval 17169 ustuqtop4 23304 metustexhalf 23618 dftr6 33624 coep 33625 coepr 33626 ttrclss 33706 brtxp 34109 pprodss4v 34113 brpprod 34114 sscoid 34142 elfuns 34144 brimg 34166 brapply 34167 brcup 34168 brcap 34169 brsuccf 34170 funpartlem 34171 brrestrict 34178 dfrecs2 34179 dfrdg4 34180 cnvssco 41103 |
Copyright terms: Public domain | W3C validator |