| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version | ||
| Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcog 5805 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: opelco 5810 cnvco 5824 cotrg 6057 resco 6197 imaco 6198 rnco 6199 rncoOLD 6200 coass 6213 dfpo2 6243 dffv2 6917 foeqcnvco 7234 f1eqcocnv 7235 ttrclss 9610 rtrclreclem3 14967 imasleval 17445 ustuqtop4 24159 metustexhalf 24471 dftr6 35795 coep 35796 coepr 35797 brtxp 35922 pprodss4v 35926 brpprod 35927 sscoid 35955 elfuns 35957 brimg 35979 brapply 35980 brcup 35981 brcap 35982 brsuccf 35984 funpartlem 35986 brrestrict 35993 dfrecs2 35994 dfrdg4 35995 cnvssco 43709 brpermmodel 45106 xpco2 48967 |
| Copyright terms: Public domain | W3C validator |