| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version | ||
| Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcog 5876 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ∘ ccom 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-co 5693 |
| This theorem is referenced by: opelco 5881 cnvco 5895 cotrg 6126 cotrgOLD 6127 resco 6269 imaco 6270 rnco 6271 coass 6284 dfpo2 6315 dffv2 7003 foeqcnvco 7321 f1eqcocnv 7322 ttrclss 9761 rtrclreclem3 15100 imasleval 17587 ustuqtop4 24254 metustexhalf 24570 dftr6 35752 coep 35753 coepr 35754 brtxp 35882 pprodss4v 35886 brpprod 35887 sscoid 35915 elfuns 35917 brimg 35939 brapply 35940 brcup 35941 brcap 35942 brsuccf 35943 funpartlem 35944 brrestrict 35951 dfrecs2 35952 dfrdg4 35953 cnvssco 43624 |
| Copyright terms: Public domain | W3C validator |