MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brco Structured version   Visualization version   GIF version

Theorem brco 5861
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
brco (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2 𝐴 ∈ V
2 opelco.2 . 2 𝐵 ∈ V
3 brcog 5857 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1778  wcel 2107  Vcvv 3463   class class class wbr 5123  ccom 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-co 5674
This theorem is referenced by:  opelco  5862  cnvco  5876  cotrg  6107  cotrgOLD  6108  resco  6250  imaco  6251  rnco  6252  coass  6265  dfpo2  6296  dffv2  6984  foeqcnvco  7302  f1eqcocnv  7303  ttrclss  9742  rtrclreclem3  15081  imasleval  17557  ustuqtop4  24199  metustexhalf  24513  dftr6  35710  coep  35711  coepr  35712  brtxp  35840  pprodss4v  35844  brpprod  35845  sscoid  35873  elfuns  35875  brimg  35897  brapply  35898  brcup  35899  brcap  35900  brsuccf  35901  funpartlem  35902  brrestrict  35909  dfrecs2  35910  dfrdg4  35911  cnvssco  43581
  Copyright terms: Public domain W3C validator