![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version |
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | ⊢ 𝐴 ∈ V |
opelco.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcog 5534 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
4 | 1, 2, 3 | mp2an 682 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∃wex 1823 ∈ wcel 2106 Vcvv 3397 class class class wbr 4886 ∘ ccom 5359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-co 5364 |
This theorem is referenced by: opelco 5539 cnvco 5553 resco 5893 imaco 5894 rnco 5895 coass 5908 dffv2 6531 foeqcnvco 6827 f1eqcocnv 6828 rtrclreclem3 14207 imasleval 16587 ustuqtop4 22456 metustexhalf 22769 dftr6 32234 coep 32235 coepr 32236 dfpo2 32239 brtxp 32576 pprodss4v 32580 brpprod 32581 sscoid 32609 elfuns 32611 brimg 32633 brapply 32634 brcup 32635 brcap 32636 brsuccf 32637 funpartlem 32638 brrestrict 32645 dfrecs2 32646 dfrdg4 32647 cnvssco 38851 |
Copyright terms: Public domain | W3C validator |