![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version |
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | ⊢ 𝐴 ∈ V |
opelco.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcog 5891 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: opelco 5896 cnvco 5910 cotrg 6139 cotrgOLD 6140 resco 6281 imaco 6282 rnco 6283 coass 6296 dfpo2 6327 dffv2 7017 foeqcnvco 7336 f1eqcocnv 7337 ttrclss 9789 rtrclreclem3 15109 imasleval 17601 ustuqtop4 24274 metustexhalf 24590 dftr6 35713 coep 35714 coepr 35715 brtxp 35844 pprodss4v 35848 brpprod 35849 sscoid 35877 elfuns 35879 brimg 35901 brapply 35902 brcup 35903 brcap 35904 brsuccf 35905 funpartlem 35906 brrestrict 35913 dfrecs2 35914 dfrdg4 35915 cnvssco 43568 |
Copyright terms: Public domain | W3C validator |