MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brco Structured version   Visualization version   GIF version

Theorem brco 5538
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
brco (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2 𝐴 ∈ V
2 opelco.2 . 2 𝐵 ∈ V
3 brcog 5534 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
41, 2, 3mp2an 682 1 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wex 1823  wcel 2106  Vcvv 3397   class class class wbr 4886  ccom 5359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949  df-co 5364
This theorem is referenced by:  opelco  5539  cnvco  5553  resco  5893  imaco  5894  rnco  5895  coass  5908  dffv2  6531  foeqcnvco  6827  f1eqcocnv  6828  rtrclreclem3  14207  imasleval  16587  ustuqtop4  22456  metustexhalf  22769  dftr6  32234  coep  32235  coepr  32236  dfpo2  32239  brtxp  32576  pprodss4v  32580  brpprod  32581  sscoid  32609  elfuns  32611  brimg  32633  brapply  32634  brcup  32635  brcap  32636  brsuccf  32637  funpartlem  32638  brrestrict  32645  dfrecs2  32646  dfrdg4  32647  cnvssco  38851
  Copyright terms: Public domain W3C validator