| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version | ||
| Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcog 5857 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 ∘ ccom 5669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-co 5674 |
| This theorem is referenced by: opelco 5862 cnvco 5876 cotrg 6107 cotrgOLD 6108 resco 6250 imaco 6251 rnco 6252 coass 6265 dfpo2 6296 dffv2 6984 foeqcnvco 7302 f1eqcocnv 7303 ttrclss 9742 rtrclreclem3 15081 imasleval 17557 ustuqtop4 24199 metustexhalf 24513 dftr6 35710 coep 35711 coepr 35712 brtxp 35840 pprodss4v 35844 brpprod 35845 sscoid 35873 elfuns 35875 brimg 35897 brapply 35898 brcup 35899 brcap 35900 brsuccf 35901 funpartlem 35902 brrestrict 35909 dfrecs2 35910 dfrdg4 35911 cnvssco 43581 |
| Copyright terms: Public domain | W3C validator |