| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13690 fi1uzind 14414 brfi1indALT 14417 swrdswrdlem 14611 initoeu2lem1 17921 nzerooringczr 21418 pm2mpf1 22715 mp2pm2mplem4 22725 neindisj2 23039 2ndcdisj 23372 cusgrsize2inds 29433 elwwlks2 29945 clwlkclwwlklem2a4 29975 clwlkclwwlklem2a 29976 erclwwlktr 30000 erclwwlkntr 30049 clwwlknonex2lem2 30086 frgrnbnb 30271 frgrregord013 30373 zerdivemp1x 37993 icceuelpart 47473 lighneallem3 47644 bgoldbtbndlem4 47845 bgoldbtbnd 47846 tgoldbach 47854 uhgrimisgrgriclem 47967 uhgrimisgrgric 47968 clnbgrgrimlem 47970 clnbgrgrim 47971 grimedg 47972 lindslinindsimp1 48495 ldepspr 48511 nn0sumshdiglemA 48657 nn0sumshdiglemB 48658 |
| Copyright terms: Public domain | W3C validator |