| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13755 fi1uzind 14479 brfi1indALT 14482 swrdswrdlem 14676 initoeu2lem1 17983 nzerooringczr 21397 pm2mpf1 22693 mp2pm2mplem4 22703 neindisj2 23017 2ndcdisj 23350 cusgrsize2inds 29388 elwwlks2 29903 clwlkclwwlklem2a4 29933 clwlkclwwlklem2a 29934 erclwwlktr 29958 erclwwlkntr 30007 clwwlknonex2lem2 30044 frgrnbnb 30229 frgrregord013 30331 zerdivemp1x 37948 icceuelpart 47441 lighneallem3 47612 bgoldbtbndlem4 47813 bgoldbtbnd 47814 tgoldbach 47822 uhgrimisgrgriclem 47934 uhgrimisgrgric 47935 clnbgrgrimlem 47937 clnbgrgrim 47938 grimedg 47939 lindslinindsimp1 48450 ldepspr 48466 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |