Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13219 fi1uzind 13920 brfi1indALT 13923 swrdswrdlem 14126 initoeu2lem1 17353 pm2mpf1 21512 mp2pm2mplem4 21522 neindisj2 21836 2ndcdisj 22169 cusgrsize2inds 27355 elwwlks2 27864 clwlkclwwlklem2a4 27894 clwlkclwwlklem2a 27895 erclwwlktr 27919 erclwwlkntr 27968 clwwlknonex2lem2 28005 frgrnbnb 28190 frgrregord013 28292 zerdivemp1x 35699 icceuelpart 44370 lighneallem3 44541 bgoldbtbndlem4 44742 bgoldbtbnd 44743 tgoldbach 44751 nzerooringczr 45112 lindslinindsimp1 45280 ldepspr 45296 nn0sumshdiglemA 45447 nn0sumshdiglemB 45448 |
Copyright terms: Public domain | W3C validator |