| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13748 fi1uzind 14472 brfi1indALT 14475 swrdswrdlem 14669 initoeu2lem1 17976 nzerooringczr 21390 pm2mpf1 22686 mp2pm2mplem4 22696 neindisj2 23010 2ndcdisj 23343 cusgrsize2inds 29381 elwwlks2 29896 clwlkclwwlklem2a4 29926 clwlkclwwlklem2a 29927 erclwwlktr 29951 erclwwlkntr 30000 clwwlknonex2lem2 30037 frgrnbnb 30222 frgrregord013 30324 zerdivemp1x 37941 icceuelpart 47437 lighneallem3 47608 bgoldbtbndlem4 47809 bgoldbtbnd 47810 tgoldbach 47818 uhgrimisgrgriclem 47930 uhgrimisgrgric 47931 clnbgrgrimlem 47933 clnbgrgrim 47934 grimedg 47935 lindslinindsimp1 48446 ldepspr 48462 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |