| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13694 fi1uzind 14418 brfi1indALT 14421 swrdswrdlem 14615 initoeu2lem1 17925 nzerooringczr 21421 pm2mpf1 22717 mp2pm2mplem4 22727 neindisj2 23041 2ndcdisj 23374 cusgrsize2inds 29436 elwwlks2 29951 clwlkclwwlklem2a4 29981 clwlkclwwlklem2a 29982 erclwwlktr 30006 erclwwlkntr 30055 clwwlknonex2lem2 30092 frgrnbnb 30277 frgrregord013 30379 zerdivemp1x 38010 icceuelpart 47563 lighneallem3 47734 bgoldbtbndlem4 47935 bgoldbtbnd 47936 tgoldbach 47944 uhgrimisgrgriclem 48057 uhgrimisgrgric 48058 clnbgrgrimlem 48060 clnbgrgrim 48061 grimedg 48062 lindslinindsimp1 48585 ldepspr 48601 nn0sumshdiglemA 48747 nn0sumshdiglemB 48748 |
| Copyright terms: Public domain | W3C validator |