| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13803 fi1uzind 14525 brfi1indALT 14528 swrdswrdlem 14722 initoeu2lem1 18027 nzerooringczr 21441 pm2mpf1 22737 mp2pm2mplem4 22747 neindisj2 23061 2ndcdisj 23394 cusgrsize2inds 29433 elwwlks2 29948 clwlkclwwlklem2a4 29978 clwlkclwwlklem2a 29979 erclwwlktr 30003 erclwwlkntr 30052 clwwlknonex2lem2 30089 frgrnbnb 30274 frgrregord013 30376 zerdivemp1x 37971 icceuelpart 47450 lighneallem3 47621 bgoldbtbndlem4 47822 bgoldbtbnd 47823 tgoldbach 47831 uhgrimisgrgriclem 47943 uhgrimisgrgric 47944 clnbgrgrimlem 47946 clnbgrgrim 47947 grimedg 47948 lindslinindsimp1 48433 ldepspr 48449 nn0sumshdiglemA 48599 nn0sumshdiglemB 48600 |
| Copyright terms: Public domain | W3C validator |