| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| Ref | Expression |
|---|---|
| com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
| Ref | Expression |
|---|---|
| com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
| 2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
| 3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
| 4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: injresinjlem 13708 fi1uzind 14432 brfi1indALT 14435 swrdswrdlem 14628 initoeu2lem1 17939 nzerooringczr 21405 pm2mpf1 22702 mp2pm2mplem4 22712 neindisj2 23026 2ndcdisj 23359 cusgrsize2inds 29417 elwwlks2 29929 clwlkclwwlklem2a4 29959 clwlkclwwlklem2a 29960 erclwwlktr 29984 erclwwlkntr 30033 clwwlknonex2lem2 30070 frgrnbnb 30255 frgrregord013 30357 zerdivemp1x 37929 icceuelpart 47424 lighneallem3 47595 bgoldbtbndlem4 47796 bgoldbtbnd 47797 tgoldbach 47805 uhgrimisgrgriclem 47918 uhgrimisgrgric 47919 clnbgrgrimlem 47921 clnbgrgrim 47922 grimedg 47923 lindslinindsimp1 48446 ldepspr 48462 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |