MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com25 Structured version   Visualization version   GIF version

Theorem com25 99
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com25 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))

Proof of Theorem com25
StepHypRef Expression
1 com5.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com24 95 . . 3 (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏𝜂)))))
32com45 97 . 2 (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓𝜂)))))
43com24 95 1 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13823  fi1uzind  14543  brfi1indALT  14546  swrdswrdlem  14739  initoeu2lem1  18068  nzerooringczr  21509  pm2mpf1  22821  mp2pm2mplem4  22831  neindisj2  23147  2ndcdisj  23480  cusgrsize2inds  29486  elwwlks2  29996  clwlkclwwlklem2a4  30026  clwlkclwwlklem2a  30027  erclwwlktr  30051  erclwwlkntr  30100  clwwlknonex2lem2  30137  frgrnbnb  30322  frgrregord013  30424  zerdivemp1x  37934  icceuelpart  47361  lighneallem3  47532  bgoldbtbndlem4  47733  bgoldbtbnd  47734  tgoldbach  47742  uhgrimisgrgriclem  47836  uhgrimisgrgric  47837  clnbgrgrimlem  47839  clnbgrgrim  47840  grimedg  47841  lindslinindsimp1  48303  ldepspr  48319  nn0sumshdiglemA  48469  nn0sumshdiglemB  48470
  Copyright terms: Public domain W3C validator