![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13823 fi1uzind 14543 brfi1indALT 14546 swrdswrdlem 14739 initoeu2lem1 18068 nzerooringczr 21509 pm2mpf1 22821 mp2pm2mplem4 22831 neindisj2 23147 2ndcdisj 23480 cusgrsize2inds 29486 elwwlks2 29996 clwlkclwwlklem2a4 30026 clwlkclwwlklem2a 30027 erclwwlktr 30051 erclwwlkntr 30100 clwwlknonex2lem2 30137 frgrnbnb 30322 frgrregord013 30424 zerdivemp1x 37934 icceuelpart 47361 lighneallem3 47532 bgoldbtbndlem4 47733 bgoldbtbnd 47734 tgoldbach 47742 uhgrimisgrgriclem 47836 uhgrimisgrgric 47837 clnbgrgrimlem 47839 clnbgrgrim 47840 grimedg 47841 lindslinindsimp1 48303 ldepspr 48319 nn0sumshdiglemA 48469 nn0sumshdiglemB 48470 |
Copyright terms: Public domain | W3C validator |