![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13837 fi1uzind 14556 brfi1indALT 14559 swrdswrdlem 14752 initoeu2lem1 18081 nzerooringczr 21514 pm2mpf1 22826 mp2pm2mplem4 22836 neindisj2 23152 2ndcdisj 23485 cusgrsize2inds 29489 elwwlks2 29999 clwlkclwwlklem2a4 30029 clwlkclwwlklem2a 30030 erclwwlktr 30054 erclwwlkntr 30103 clwwlknonex2lem2 30140 frgrnbnb 30325 frgrregord013 30427 zerdivemp1x 37907 icceuelpart 47310 lighneallem3 47481 bgoldbtbndlem4 47682 bgoldbtbnd 47683 tgoldbach 47691 uhgrimisgrgriclem 47782 uhgrimisgrgric 47783 clnbgrgrimlem 47785 clnbgrgrim 47786 grimedg 47787 lindslinindsimp1 48186 ldepspr 48202 nn0sumshdiglemA 48353 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |