Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13435 fi1uzind 14139 brfi1indALT 14142 swrdswrdlem 14345 initoeu2lem1 17645 pm2mpf1 21856 mp2pm2mplem4 21866 neindisj2 22182 2ndcdisj 22515 cusgrsize2inds 27723 elwwlks2 28232 clwlkclwwlklem2a4 28262 clwlkclwwlklem2a 28263 erclwwlktr 28287 erclwwlkntr 28336 clwwlknonex2lem2 28373 frgrnbnb 28558 frgrregord013 28660 zerdivemp1x 36032 icceuelpart 44776 lighneallem3 44947 bgoldbtbndlem4 45148 bgoldbtbnd 45149 tgoldbach 45157 nzerooringczr 45518 lindslinindsimp1 45686 ldepspr 45702 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |