MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com25 Structured version   Visualization version   GIF version

Theorem com25 99
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com25 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))

Proof of Theorem com25
StepHypRef Expression
1 com5.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com24 95 . . 3 (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏𝜂)))))
32com45 97 . 2 (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓𝜂)))))
43com24 95 1 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13803  fi1uzind  14525  brfi1indALT  14528  swrdswrdlem  14722  initoeu2lem1  18027  nzerooringczr  21441  pm2mpf1  22737  mp2pm2mplem4  22747  neindisj2  23061  2ndcdisj  23394  cusgrsize2inds  29433  elwwlks2  29948  clwlkclwwlklem2a4  29978  clwlkclwwlklem2a  29979  erclwwlktr  30003  erclwwlkntr  30052  clwwlknonex2lem2  30089  frgrnbnb  30274  frgrregord013  30376  zerdivemp1x  37971  icceuelpart  47450  lighneallem3  47621  bgoldbtbndlem4  47822  bgoldbtbnd  47823  tgoldbach  47831  uhgrimisgrgriclem  47943  uhgrimisgrgric  47944  clnbgrgrimlem  47946  clnbgrgrim  47947  grimedg  47948  lindslinindsimp1  48433  ldepspr  48449  nn0sumshdiglemA  48599  nn0sumshdiglemB  48600
  Copyright terms: Public domain W3C validator