Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13507 fi1uzind 14211 brfi1indALT 14214 swrdswrdlem 14417 initoeu2lem1 17729 pm2mpf1 21948 mp2pm2mplem4 21958 neindisj2 22274 2ndcdisj 22607 cusgrsize2inds 27820 elwwlks2 28331 clwlkclwwlklem2a4 28361 clwlkclwwlklem2a 28362 erclwwlktr 28386 erclwwlkntr 28435 clwwlknonex2lem2 28472 frgrnbnb 28657 frgrregord013 28759 zerdivemp1x 36105 icceuelpart 44888 lighneallem3 45059 bgoldbtbndlem4 45260 bgoldbtbnd 45261 tgoldbach 45269 nzerooringczr 45630 lindslinindsimp1 45798 ldepspr 45814 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |