MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  com25 Structured version   Visualization version   GIF version

Theorem com25 99
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com25 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))

Proof of Theorem com25
StepHypRef Expression
1 com5.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com24 95 . . 3 (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏𝜂)))))
32com45 97 . 2 (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓𝜂)))))
43com24 95 1 (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓𝜂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  injresinjlem  13708  fi1uzind  14432  brfi1indALT  14435  swrdswrdlem  14628  initoeu2lem1  17939  nzerooringczr  21405  pm2mpf1  22702  mp2pm2mplem4  22712  neindisj2  23026  2ndcdisj  23359  cusgrsize2inds  29417  elwwlks2  29929  clwlkclwwlklem2a4  29959  clwlkclwwlklem2a  29960  erclwwlktr  29984  erclwwlkntr  30033  clwwlknonex2lem2  30070  frgrnbnb  30255  frgrregord013  30357  zerdivemp1x  37929  icceuelpart  47424  lighneallem3  47595  bgoldbtbndlem4  47796  bgoldbtbnd  47797  tgoldbach  47805  uhgrimisgrgriclem  47918  uhgrimisgrgric  47919  clnbgrgrimlem  47921  clnbgrgrim  47922  grimedg  47923  lindslinindsimp1  48446  ldepspr  48462  nn0sumshdiglemA  48608  nn0sumshdiglemB  48609
  Copyright terms: Public domain W3C validator