![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com25 | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Swap 2nd and 5th. Deduction associated with com14 96. (Contributed by Jeff Hankins, 28-Jun-2009.) |
Ref | Expression |
---|---|
com5.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) |
Ref | Expression |
---|---|
com25 | ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com5.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | |
2 | 1 | com24 95 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → (𝜏 → 𝜂))))) |
3 | 2 | com45 97 | . 2 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜏 → (𝜓 → 𝜂))))) |
4 | 3 | com24 95 | 1 ⊢ (𝜑 → (𝜏 → (𝜒 → (𝜃 → (𝜓 → 𝜂))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: injresinjlem 13754 fi1uzind 14460 brfi1indALT 14463 swrdswrdlem 14656 initoeu2lem1 17966 pm2mpf1 22308 mp2pm2mplem4 22318 neindisj2 22634 2ndcdisj 22967 cusgrsize2inds 28748 elwwlks2 29258 clwlkclwwlklem2a4 29288 clwlkclwwlklem2a 29289 erclwwlktr 29313 erclwwlkntr 29362 clwwlknonex2lem2 29399 frgrnbnb 29584 frgrregord013 29686 zerdivemp1x 36907 icceuelpart 46189 lighneallem3 46360 bgoldbtbndlem4 46561 bgoldbtbnd 46562 tgoldbach 46570 nzerooringczr 47055 lindslinindsimp1 47222 ldepspr 47238 nn0sumshdiglemA 47389 nn0sumshdiglemB 47390 |
Copyright terms: Public domain | W3C validator |