MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize2inds Structured version   Visualization version   GIF version

Theorem cusgrsize2inds 29471
Description: Induction step in cusgrsize 29472. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsize2inds (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝐹(𝑒)   𝑌(𝑒)

Proof of Theorem cusgrsize2inds
StepHypRef Expression
1 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6920 . . . 4 𝑉 ∈ V
3 hashnn0n0nn 14430 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
43anassrs 467 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → 𝑌 ∈ ℕ)
5 simplll 775 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑉 ∈ V)
6 simplr 769 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑁𝑉)
7 eleq1 2829 . . . . . . . . . . . . . . 15 (𝑌 = (♯‘𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
87eqcoms 2745 . . . . . . . . . . . . . 14 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
9 nnm1nn0 12567 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
108, 9biimtrdi 253 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1110ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1211imp 406 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → ((♯‘𝑉) − 1) ∈ ℕ0)
13 nncn 12274 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℂ)
14 1cnd 11256 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → 1 ∈ ℂ)
1513, 14npcand 11624 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
1615eqcomd 2743 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
178, 16biimtrdi 253 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1817ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1918imp 406 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
20 hashdifsnp1 14545 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) → ((♯‘𝑉) = (((♯‘𝑉) − 1) + 1) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)))
2120imp 406 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) ∧ (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
225, 6, 12, 19, 21syl31anc 1375 . . . . . . . . . 10 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
23 oveq1 7438 . . . . . . . . . . . . 13 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘(𝑉 ∖ {𝑁}))C2) = (((♯‘𝑉) − 1)C2))
2423eqeq2d 2748 . . . . . . . . . . . 12 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) ↔ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)))
258ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
26 nnnn0 12533 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℕ0)
27 hashclb 14397 . . . . . . . . . . . . . . . . . . . 20 (𝑉 ∈ V → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
2826, 27syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ V → 𝑉 ∈ Fin))
29 cusgrsizeindb0.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
30 cusgrsizeinds.f . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = {𝑒𝐸𝑁𝑒}
311, 29, 30cusgrsizeinds 29470 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
32 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (((♯‘𝑉) − 1) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)))
3332eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
35 bcn2m1 14363 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) = ((♯‘𝑉)C2))
3635eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) ↔ (♯‘𝐸) = ((♯‘𝑉)C2)))
3736biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3934, 38sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
4039ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4140com3r 87 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
43423exp 1120 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4443com14 96 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4528, 44syldc 48 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ V → ((♯‘𝑉) ∈ ℕ → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4645com23 86 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ V → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4746adantr 480 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4847imp 406 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
4925, 48sylbid 240 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5049imp 406 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5150com13 88 . . . . . . . . . . . 12 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5224, 51biimtrdi 253 . . . . . . . . . . 11 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5352com24 95 . . . . . . . . . 10 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5422, 53mpcom 38 . . . . . . . . 9 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5554ex 412 . . . . . . . 8 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5655adantllr 719 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
574, 56mpd 15 . . . . . 6 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5857exp41 434 . . . . 5 (𝑉 ∈ V → (𝑌 ∈ ℕ0 → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
5958com25 99 . . . 4 (𝑉 ∈ V → (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
602, 59ax-mp 5 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
61603imp 1111 . 2 ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
6261com12 32 1 (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wnel 3046  {crab 3436  Vcvv 3480  cdif 3948  {csn 4626  cfv 6561  (class class class)co 7431  Fincfn 8985  1c1 11156   + caddc 11158  cmin 11492  cn 12266  2c2 12321  0cn0 12526  Ccbc 14341  chash 14369  Vtxcvtx 29013  Edgcedg 29064  ComplUSGraphccusgr 29427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-fac 14313  df-bc 14342  df-hash 14370  df-vtx 29015  df-iedg 29016  df-edg 29065  df-uhgr 29075  df-upgr 29099  df-umgr 29100  df-uspgr 29167  df-usgr 29168  df-fusgr 29334  df-nbgr 29350  df-uvtx 29403  df-cplgr 29428  df-cusgr 29429
This theorem is referenced by:  cusgrsize  29472
  Copyright terms: Public domain W3C validator