MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize2inds Structured version   Visualization version   GIF version

Theorem cusgrsize2inds 28401
Description: Induction step in cusgrsize 28402. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsize2inds (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝐹(𝑒)   𝑌(𝑒)

Proof of Theorem cusgrsize2inds
StepHypRef Expression
1 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6856 . . . 4 𝑉 ∈ V
3 hashnn0n0nn 14291 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
43anassrs 468 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → 𝑌 ∈ ℕ)
5 simplll 773 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑉 ∈ V)
6 simplr 767 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑁𝑉)
7 eleq1 2825 . . . . . . . . . . . . . . 15 (𝑌 = (♯‘𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
87eqcoms 2744 . . . . . . . . . . . . . 14 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
9 nnm1nn0 12454 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
108, 9syl6bi 252 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1110ad2antlr 725 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1211imp 407 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → ((♯‘𝑉) − 1) ∈ ℕ0)
13 nncn 12161 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℂ)
14 1cnd 11150 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → 1 ∈ ℂ)
1513, 14npcand 11516 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
1615eqcomd 2742 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
178, 16syl6bi 252 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1817ad2antlr 725 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1918imp 407 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
20 hashdifsnp1 14395 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) → ((♯‘𝑉) = (((♯‘𝑉) − 1) + 1) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)))
2120imp 407 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) ∧ (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
225, 6, 12, 19, 21syl31anc 1373 . . . . . . . . . 10 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
23 oveq1 7364 . . . . . . . . . . . . 13 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘(𝑉 ∖ {𝑁}))C2) = (((♯‘𝑉) − 1)C2))
2423eqeq2d 2747 . . . . . . . . . . . 12 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) ↔ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)))
258ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
26 nnnn0 12420 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℕ0)
27 hashclb 14258 . . . . . . . . . . . . . . . . . . . 20 (𝑉 ∈ V → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
2826, 27syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ V → 𝑉 ∈ Fin))
29 cusgrsizeindb0.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
30 cusgrsizeinds.f . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = {𝑒𝐸𝑁𝑒}
311, 29, 30cusgrsizeinds 28400 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
32 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (((♯‘𝑉) − 1) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)))
3332eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
35 bcn2m1 14224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) = ((♯‘𝑉)C2))
3635eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) ↔ (♯‘𝐸) = ((♯‘𝑉)C2)))
3736biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3934, 38sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
4039ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4140com3r 87 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
43423exp 1119 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4443com14 96 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4528, 44syldc 48 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ V → ((♯‘𝑉) ∈ ℕ → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4645com23 86 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ V → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4746adantr 481 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4847imp 407 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
4925, 48sylbid 239 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5049imp 407 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5150com13 88 . . . . . . . . . . . 12 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5224, 51syl6bi 252 . . . . . . . . . . 11 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5352com24 95 . . . . . . . . . 10 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5422, 53mpcom 38 . . . . . . . . 9 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5554ex 413 . . . . . . . 8 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5655adantllr 717 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
574, 56mpd 15 . . . . . 6 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5857exp41 435 . . . . 5 (𝑉 ∈ V → (𝑌 ∈ ℕ0 → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
5958com25 99 . . . 4 (𝑉 ∈ V → (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
602, 59ax-mp 5 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
61603imp 1111 . 2 ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
6261com12 32 1 (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3049  {crab 3407  Vcvv 3445  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  Fincfn 8883  1c1 11052   + caddc 11054  cmin 11385  cn 12153  2c2 12208  0cn0 12413  Ccbc 14202  chash 14230  Vtxcvtx 27947  Edgcedg 27998  ComplUSGraphccusgr 28358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-fac 14174  df-bc 14203  df-hash 14231  df-vtx 27949  df-iedg 27950  df-edg 27999  df-uhgr 28009  df-upgr 28033  df-umgr 28034  df-uspgr 28101  df-usgr 28102  df-fusgr 28265  df-nbgr 28281  df-uvtx 28334  df-cplgr 28359  df-cusgr 28360
This theorem is referenced by:  cusgrsize  28402
  Copyright terms: Public domain W3C validator