MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize2inds Structured version   Visualization version   GIF version

Theorem cusgrsize2inds 27513
Description: Induction step in cusgrsize 27514. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsize2inds (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝐹(𝑒)   𝑌(𝑒)

Proof of Theorem cusgrsize2inds
StepHypRef Expression
1 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6720 . . . 4 𝑉 ∈ V
3 hashnn0n0nn 13941 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
43anassrs 471 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → 𝑌 ∈ ℕ)
5 simplll 775 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑉 ∈ V)
6 simplr 769 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑁𝑉)
7 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑌 = (♯‘𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
87eqcoms 2742 . . . . . . . . . . . . . 14 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
9 nnm1nn0 12114 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
108, 9syl6bi 256 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1110ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1211imp 410 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → ((♯‘𝑉) − 1) ∈ ℕ0)
13 nncn 11821 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℂ)
14 1cnd 10811 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → 1 ∈ ℂ)
1513, 14npcand 11176 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
1615eqcomd 2740 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
178, 16syl6bi 256 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1817ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1918imp 410 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
20 hashdifsnp1 14045 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) → ((♯‘𝑉) = (((♯‘𝑉) − 1) + 1) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)))
2120imp 410 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) ∧ (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
225, 6, 12, 19, 21syl31anc 1375 . . . . . . . . . 10 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
23 oveq1 7209 . . . . . . . . . . . . 13 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘(𝑉 ∖ {𝑁}))C2) = (((♯‘𝑉) − 1)C2))
2423eqeq2d 2745 . . . . . . . . . . . 12 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) ↔ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)))
258ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
26 nnnn0 12080 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℕ0)
27 hashclb 13908 . . . . . . . . . . . . . . . . . . . 20 (𝑉 ∈ V → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
2826, 27syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ V → 𝑉 ∈ Fin))
29 cusgrsizeindb0.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
30 cusgrsizeinds.f . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = {𝑒𝐸𝑁𝑒}
311, 29, 30cusgrsizeinds 27512 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
32 oveq2 7210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (((♯‘𝑉) − 1) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)))
3332eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
3433adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
35 bcn2m1 13873 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) = ((♯‘𝑉)C2))
3635eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) ↔ (♯‘𝐸) = ((♯‘𝑉)C2)))
3736biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3837adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3934, 38sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
4039ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4140com3r 87 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
43423exp 1121 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4443com14 96 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4528, 44syldc 48 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ V → ((♯‘𝑉) ∈ ℕ → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4645com23 86 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ V → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4746adantr 484 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4847imp 410 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
4925, 48sylbid 243 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5049imp 410 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5150com13 88 . . . . . . . . . . . 12 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5224, 51syl6bi 256 . . . . . . . . . . 11 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5352com24 95 . . . . . . . . . 10 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5422, 53mpcom 38 . . . . . . . . 9 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5554ex 416 . . . . . . . 8 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5655adantllr 719 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
574, 56mpd 15 . . . . . 6 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5857exp41 438 . . . . 5 (𝑉 ∈ V → (𝑌 ∈ ℕ0 → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
5958com25 99 . . . 4 (𝑉 ∈ V → (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
602, 59ax-mp 5 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
61603imp 1113 . 2 ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
6261com12 32 1 (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wnel 3039  {crab 3058  Vcvv 3401  cdif 3854  {csn 4531  cfv 6369  (class class class)co 7202  Fincfn 8615  1c1 10713   + caddc 10715  cmin 11045  cn 11813  2c2 11868  0cn0 12073  Ccbc 13851  chash 13879  Vtxcvtx 27059  Edgcedg 27110  ComplUSGraphccusgr 27470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-seq 13558  df-fac 13823  df-bc 13852  df-hash 13880  df-vtx 27061  df-iedg 27062  df-edg 27111  df-uhgr 27121  df-upgr 27145  df-umgr 27146  df-uspgr 27213  df-usgr 27214  df-fusgr 27377  df-nbgr 27393  df-uvtx 27446  df-cplgr 27471  df-cusgr 27472
This theorem is referenced by:  cusgrsize  27514
  Copyright terms: Public domain W3C validator