MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize2inds Structured version   Visualization version   GIF version

Theorem cusgrsize2inds 27820
Description: Induction step in cusgrsize 27821. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsize2inds (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝐹(𝑒)   𝑌(𝑒)

Proof of Theorem cusgrsize2inds
StepHypRef Expression
1 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6788 . . . 4 𝑉 ∈ V
3 hashnn0n0nn 14106 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
43anassrs 468 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → 𝑌 ∈ ℕ)
5 simplll 772 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑉 ∈ V)
6 simplr 766 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑁𝑉)
7 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑌 = (♯‘𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
87eqcoms 2746 . . . . . . . . . . . . . 14 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
9 nnm1nn0 12274 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
108, 9syl6bi 252 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1110ad2antlr 724 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1211imp 407 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → ((♯‘𝑉) − 1) ∈ ℕ0)
13 nncn 11981 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℂ)
14 1cnd 10970 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → 1 ∈ ℂ)
1513, 14npcand 11336 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
1615eqcomd 2744 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
178, 16syl6bi 252 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1817ad2antlr 724 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1918imp 407 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
20 hashdifsnp1 14210 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) → ((♯‘𝑉) = (((♯‘𝑉) − 1) + 1) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)))
2120imp 407 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) ∧ (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
225, 6, 12, 19, 21syl31anc 1372 . . . . . . . . . 10 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
23 oveq1 7282 . . . . . . . . . . . . 13 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘(𝑉 ∖ {𝑁}))C2) = (((♯‘𝑉) − 1)C2))
2423eqeq2d 2749 . . . . . . . . . . . 12 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) ↔ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)))
258ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
26 nnnn0 12240 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℕ0)
27 hashclb 14073 . . . . . . . . . . . . . . . . . . . 20 (𝑉 ∈ V → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
2826, 27syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ V → 𝑉 ∈ Fin))
29 cusgrsizeindb0.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
30 cusgrsizeinds.f . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = {𝑒𝐸𝑁𝑒}
311, 29, 30cusgrsizeinds 27819 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
32 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (((♯‘𝑉) − 1) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)))
3332eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
35 bcn2m1 14038 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) = ((♯‘𝑉)C2))
3635eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) ↔ (♯‘𝐸) = ((♯‘𝑉)C2)))
3736biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3934, 38sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
4039ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4140com3r 87 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
43423exp 1118 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4443com14 96 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4528, 44syldc 48 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ V → ((♯‘𝑉) ∈ ℕ → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4645com23 86 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ V → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4746adantr 481 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4847imp 407 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
4925, 48sylbid 239 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5049imp 407 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5150com13 88 . . . . . . . . . . . 12 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5224, 51syl6bi 252 . . . . . . . . . . 11 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5352com24 95 . . . . . . . . . 10 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5422, 53mpcom 38 . . . . . . . . 9 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5554ex 413 . . . . . . . 8 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5655adantllr 716 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
574, 56mpd 15 . . . . . 6 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5857exp41 435 . . . . 5 (𝑉 ∈ V → (𝑌 ∈ ℕ0 → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
5958com25 99 . . . 4 (𝑉 ∈ V → (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
602, 59ax-mp 5 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
61603imp 1110 . 2 ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
6261com12 32 1 (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wnel 3049  {crab 3068  Vcvv 3432  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872   + caddc 10874  cmin 11205  cn 11973  2c2 12028  0cn0 12233  Ccbc 14016  chash 14044  Vtxcvtx 27366  Edgcedg 27417  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-fac 13988  df-bc 14017  df-hash 14045  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-fusgr 27684  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778  df-cusgr 27779
This theorem is referenced by:  cusgrsize  27821
  Copyright terms: Public domain W3C validator