MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize2inds Structured version   Visualization version   GIF version

Theorem cusgrsize2inds 29486
Description: Induction step in cusgrsize 29487. If the size of the complete graph with 𝑛 vertices reduced by one vertex is "(𝑛 − 1) choose 2", the size of the complete graph with 𝑛 vertices is "𝑛 choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsize2inds (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝐹(𝑒)   𝑌(𝑒)

Proof of Theorem cusgrsize2inds
StepHypRef Expression
1 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6921 . . . 4 𝑉 ∈ V
3 hashnn0n0nn 14427 . . . . . . . 8 (((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌𝑁𝑉)) → 𝑌 ∈ ℕ)
43anassrs 467 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → 𝑌 ∈ ℕ)
5 simplll 775 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑉 ∈ V)
6 simplr 769 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → 𝑁𝑉)
7 eleq1 2827 . . . . . . . . . . . . . . 15 (𝑌 = (♯‘𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
87eqcoms 2743 . . . . . . . . . . . . . 14 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
9 nnm1nn0 12565 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
108, 9biimtrdi 253 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1110ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0))
1211imp 406 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → ((♯‘𝑉) − 1) ∈ ℕ0)
13 nncn 12272 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℂ)
14 1cnd 11254 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) ∈ ℕ → 1 ∈ ℂ)
1513, 14npcand 11622 . . . . . . . . . . . . . . 15 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + 1) = (♯‘𝑉))
1615eqcomd 2741 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
178, 16biimtrdi 253 . . . . . . . . . . . . 13 ((♯‘𝑉) = 𝑌 → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1817ad2antlr 727 . . . . . . . . . . . 12 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)))
1918imp 406 . . . . . . . . . . 11 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝑉) = (((♯‘𝑉) − 1) + 1))
20 hashdifsnp1 14542 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) → ((♯‘𝑉) = (((♯‘𝑉) − 1) + 1) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)))
2120imp 406 . . . . . . . . . . 11 (((𝑉 ∈ V ∧ 𝑁𝑉 ∧ ((♯‘𝑉) − 1) ∈ ℕ0) ∧ (♯‘𝑉) = (((♯‘𝑉) − 1) + 1)) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
225, 6, 12, 19, 21syl31anc 1372 . . . . . . . . . 10 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
23 oveq1 7438 . . . . . . . . . . . . 13 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘(𝑉 ∖ {𝑁}))C2) = (((♯‘𝑉) − 1)C2))
2423eqeq2d 2746 . . . . . . . . . . . 12 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) ↔ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)))
258ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ ↔ (♯‘𝑉) ∈ ℕ))
26 nnnn0 12531 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (♯‘𝑉) ∈ ℕ0)
27 hashclb 14394 . . . . . . . . . . . . . . . . . . . 20 (𝑉 ∈ V → (𝑉 ∈ Fin ↔ (♯‘𝑉) ∈ ℕ0))
2826, 27syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ V → 𝑉 ∈ Fin))
29 cusgrsizeindb0.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
30 cusgrsizeinds.f . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = {𝑒𝐸𝑁𝑒}
311, 29, 30cusgrsizeinds 29485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
32 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (((♯‘𝑉) − 1) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)))
3332eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) ↔ (♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2))))
35 bcn2m1 14360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ ℕ → (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) = ((♯‘𝑉)C2))
3635eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) ↔ (♯‘𝐸) = ((♯‘𝑉)C2)))
3736biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (((♯‘𝑉) − 1)C2)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
3934, 38sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝐹) = (((♯‘𝑉) − 1)C2)) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2)))
4039ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4140com3r 87 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
43423exp 1118 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4443com14 96 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4528, 44syldc 48 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ V → ((♯‘𝑉) ∈ ℕ → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4645com23 86 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ V → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4746adantr 480 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) → (𝑁𝑉 → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
4847imp 406 . . . . . . . . . . . . . . 15 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → ((♯‘𝑉) ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
4925, 48sylbid 240 . . . . . . . . . . . . . 14 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5049imp 406 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5150com13 88 . . . . . . . . . . . 12 ((♯‘𝐹) = (((♯‘𝑉) − 1)C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5224, 51biimtrdi 253 . . . . . . . . . . 11 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (𝐺 ∈ ComplUSGraph → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5352com24 95 . . . . . . . . . 10 ((♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1) → ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5422, 53mpcom 38 . . . . . . . . 9 ((((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) ∧ 𝑌 ∈ ℕ) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5554ex 412 . . . . . . . 8 (((𝑉 ∈ V ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
5655adantllr 719 . . . . . . 7 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝑌 ∈ ℕ → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))
574, 56mpd 15 . . . . . 6 ((((𝑉 ∈ V ∧ 𝑌 ∈ ℕ0) ∧ (♯‘𝑉) = 𝑌) ∧ 𝑁𝑉) → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
5857exp41 434 . . . . 5 (𝑉 ∈ V → (𝑌 ∈ ℕ0 → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝐺 ∈ ComplUSGraph → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
5958com25 99 . . . 4 (𝑉 ∈ V → (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2)))))))
602, 59ax-mp 5 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) = 𝑌 → (𝑁𝑉 → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))))
61603imp 1110 . 2 ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → (𝑌 ∈ ℕ0 → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
6261com12 32 1 (𝑌 ∈ ℕ0 → ((𝐺 ∈ ComplUSGraph ∧ (♯‘𝑉) = 𝑌𝑁𝑉) → ((♯‘𝐹) = ((♯‘(𝑉 ∖ {𝑁}))C2) → (♯‘𝐸) = ((♯‘𝑉)C2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wnel 3044  {crab 3433  Vcvv 3478  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Fincfn 8984  1c1 11154   + caddc 11156  cmin 11490  cn 12264  2c2 12319  0cn0 12524  Ccbc 14338  chash 14366  Vtxcvtx 29028  Edgcedg 29079  ComplUSGraphccusgr 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-fac 14310  df-bc 14339  df-hash 14367  df-vtx 29030  df-iedg 29031  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-fusgr 29349  df-nbgr 29365  df-uvtx 29418  df-cplgr 29443  df-cusgr 29444
This theorem is referenced by:  cusgrsize  29487
  Copyright terms: Public domain W3C validator