| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nnnn0 12533 | . . . 4
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 / 2) ∈
ℕ0) | 
| 2 |  | blennn0em1 48512 | . . . 4
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈
ℕ0) → (#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1)) | 
| 3 | 1, 2 | sylan2 593 | . . 3
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
(#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1)) | 
| 4 |  | fveqeq2 6915 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑎 / 2) → ((#b‘𝑥) = 𝑦 ↔ (#b‘(𝑎 / 2)) = 𝑦)) | 
| 5 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑎 / 2) → 𝑥 = (𝑎 / 2)) | 
| 6 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 / 2) → (𝑘(digit‘2)𝑥) = (𝑘(digit‘2)(𝑎 / 2))) | 
| 7 | 6 | oveq1d 7446 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎 / 2) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) | 
| 8 | 7 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑥 = (𝑎 / 2) ∧ 𝑘 ∈ (0..^𝑦)) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) | 
| 9 | 8 | sumeq2dv 15738 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑎 / 2) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) | 
| 10 | 5, 9 | eqeq12d 2753 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑎 / 2) → (𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))) | 
| 11 | 4, 10 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑥 = (𝑎 / 2) → (((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) ↔ ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))) | 
| 12 | 11 | rspcva 3620 | . . . . . . . . 9
⊢ (((𝑎 / 2) ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))) | 
| 13 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
(#b‘𝑎) =
(𝑦 + 1)) | 
| 14 | 13 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
((#b‘𝑎)
− 1) = ((𝑦 + 1)
− 1)) | 
| 15 |  | nncn 12274 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) | 
| 16 |  | pncan1 11687 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦) | 
| 17 | 15, 16 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) | 
| 18 | 14, 17 | sylan9eq 2797 | . . . . . . . . . . . . . . 15
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘𝑎)
− 1) = 𝑦) | 
| 19 | 18 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) ↔
(#b‘(𝑎 /
2)) = 𝑦)) | 
| 20 |  | nnz 12634 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) | 
| 21 | 20 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ) | 
| 22 |  | fzval3 13773 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(0...𝑦) = (0..^(𝑦 + 1))) | 
| 23 | 21, 22 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0...𝑦) = (0..^(𝑦 + 1))) | 
| 24 | 23 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^(𝑦 + 1)) = (0...𝑦)) | 
| 25 | 24 | sumeq1d 15736 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) | 
| 26 |  | nnnn0 12533 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) | 
| 27 |  | elnn0uz 12923 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ0
↔ 𝑦 ∈
(ℤ≥‘0)) | 
| 28 | 26, 27 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
(ℤ≥‘0)) | 
| 29 | 28 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
(ℤ≥‘0)) | 
| 30 |  | 2nn 12339 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℕ | 
| 31 | 30 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 2 ∈ ℕ) | 
| 32 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℤ) | 
| 33 | 32 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑘 ∈ ℤ) | 
| 34 |  | nnnn0 12533 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ0) | 
| 35 |  | nn0rp0 13495 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
(0[,)+∞)) | 
| 36 | 34, 35 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
(0[,)+∞)) | 
| 37 | 36 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑎 ∈ (0[,)+∞)) | 
| 38 |  | digvalnn0 48520 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℤ ∧ 𝑎
∈ (0[,)+∞)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) | 
| 39 | 31, 33, 37, 38 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) | 
| 40 | 39 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ) | 
| 41 |  | 2nn0 12543 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 2 ∈
ℕ0 | 
| 42 | 41 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 2 ∈
ℕ0) | 
| 43 |  | elfznn0 13660 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℕ0) | 
| 44 | 42, 43 | nn0expcld 14285 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈
ℕ0) | 
| 45 | 44 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℂ) | 
| 46 | 45 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (2↑𝑘) ∈ ℂ) | 
| 47 | 40, 46 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ) | 
| 48 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎)) | 
| 49 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) | 
| 50 | 48, 49 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · (2↑0))) | 
| 51 |  | 2cn 12341 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℂ | 
| 52 |  | exp0 14106 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2 ∈
ℂ → (2↑0) = 1) | 
| 53 | 51, 52 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(2↑0) = 1 | 
| 54 | 53 | oveq2i 7442 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((0(digit‘2)𝑎)
· (2↑0)) = ((0(digit‘2)𝑎) · 1) | 
| 55 | 50, 54 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1)) | 
| 56 | 29, 47, 55 | fsum1p 15789 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) | 
| 57 |  | 0dig2nn0e 48533 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ ℕ0
∧ (𝑎 / 2) ∈
ℕ0) → (0(digit‘2)𝑎) = 0) | 
| 58 | 34, 1, 57 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
(0(digit‘2)𝑎) =
0) | 
| 59 | 58 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = (0 · 1)) | 
| 60 |  | 1re 11261 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 ∈
ℝ | 
| 61 |  | mul02lem2 11438 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 ∈
ℝ → (0 · 1) = 0) | 
| 62 | 60, 61 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0
· 1) = 0 | 
| 63 | 59, 62 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = 0) | 
| 64 | 63 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
((0(digit‘2)𝑎)
· 1) = 0) | 
| 65 | 64 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = 0) | 
| 66 |  | 1z 12647 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ | 
| 67 | 66 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 1 ∈
ℤ) | 
| 68 |  | 0p1e1 12388 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 + 1) =
1 | 
| 69 | 68, 66 | eqeltri 2837 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 + 1)
∈ ℤ | 
| 70 | 69 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + 1) ∈
ℤ) | 
| 71 | 30 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 2 ∈ ℕ) | 
| 72 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℤ) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑘 ∈ ℤ) | 
| 74 | 36 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ (0[,)+∞)) | 
| 75 | 71, 73, 74, 38 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) | 
| 76 | 75 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ) | 
| 77 |  | 2cnd 12344 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 2 ∈
ℂ) | 
| 78 |  | elfznn 13593 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ) | 
| 79 | 78 | nnnn0d 12587 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ0) | 
| 80 | 68 | oveq1i 7441 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0 +
1)...𝑦) = (1...𝑦) | 
| 81 | 79, 80 | eleq2s 2859 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℕ0) | 
| 82 | 77, 81 | expcld 14186 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → (2↑𝑘) ∈
ℂ) | 
| 83 | 82 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (2↑𝑘) ∈ ℂ) | 
| 84 | 76, 83 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ) | 
| 85 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (𝑘(digit‘2)𝑎) = ((𝑖 + 1)(digit‘2)𝑎)) | 
| 86 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (2↑𝑘) = (2↑(𝑖 + 1))) | 
| 87 | 85, 86 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) | 
| 88 | 67, 70, 21, 84, 87 | fsumshftm 15817 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) | 
| 89 | 65, 88 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((0(digit‘2)𝑎)
· 1) + Σ𝑘
∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))) | 
| 90 | 1 | ad4antr 732 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈
ℕ0) | 
| 91 | 34 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ ℕ0) | 
| 92 |  | elfzonn0 13747 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℕ0) | 
| 93 | 92 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℕ0) | 
| 94 |  | dignn0ehalf 48538 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 / 2) ∈ ℕ0
∧ 𝑎 ∈
ℕ0 ∧ 𝑖
∈ ℕ0) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2))) | 
| 95 | 90, 91, 93, 94 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2))) | 
| 96 |  | 2cnd 12344 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈ ℂ) | 
| 97 | 96, 92 | expp1d 14187 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2)) | 
| 98 | 97 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2)) | 
| 99 | 95, 98 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2))) | 
| 100 | 30 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℕ) | 
| 101 |  | elfzoelz 13699 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℤ) | 
| 102 | 101 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℤ) | 
| 103 |  | nn0rp0 13495 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 / 2) ∈ ℕ0
→ (𝑎 / 2) ∈
(0[,)+∞)) | 
| 104 | 1, 103 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 / 2) ∈
(0[,)+∞)) | 
| 105 | 104 | ad4antr 732 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ (0[,)+∞)) | 
| 106 |  | digvalnn0 48520 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((2
∈ ℕ ∧ 𝑖
∈ ℤ ∧ (𝑎 /
2) ∈ (0[,)+∞)) → (𝑖(digit‘2)(𝑎 / 2)) ∈
ℕ0) | 
| 107 | 100, 102,
105, 106 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈
ℕ0) | 
| 108 | 107 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ) | 
| 109 |  | 2re 12340 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 2 ∈
ℝ | 
| 110 | 109 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈ ℝ) | 
| 111 | 110, 92 | reexpcld 14203 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℝ) | 
| 112 | 111 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ) | 
| 113 | 112 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ) | 
| 114 |  | 2cnd 12344 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℂ) | 
| 115 |  | mulass 11243 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧
(2↑𝑖) ∈ ℂ
∧ 2 ∈ ℂ) → (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2))) | 
| 116 | 115 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧
(2↑𝑖) ∈ ℂ
∧ 2 ∈ ℂ) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 117 | 108, 113,
114, 116 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 118 | 99, 117 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 119 | 118 | sumeq2dv 15738 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 120 |  | 0cn 11253 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
ℂ | 
| 121 |  | pncan1 11687 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (0 ∈
ℂ → ((0 + 1) − 1) = 0) | 
| 122 | 120, 121 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 + 1)
− 1) = 0 | 
| 123 | 122 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℕ → ((0 + 1)
− 1) = 0) | 
| 124 | 123 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → (((0 + 1)
− 1)...(𝑦 − 1))
= (0...(𝑦 −
1))) | 
| 125 |  | fzoval 13700 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℤ →
(0..^𝑦) = (0...(𝑦 − 1))) | 
| 126 | 125 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ →
(0...(𝑦 − 1)) =
(0..^𝑦)) | 
| 127 | 20, 126 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ →
(0...(𝑦 − 1)) =
(0..^𝑦)) | 
| 128 | 124, 127 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℕ → (((0 + 1)
− 1)...(𝑦 − 1))
= (0..^𝑦)) | 
| 129 | 128 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0 + 1) −
1)...(𝑦 − 1)) =
(0..^𝑦)) | 
| 130 | 129 | sumeq1d 15736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) | 
| 131 | 130 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))) | 
| 132 |  | fzofi 14015 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0..^𝑦) ∈
Fin | 
| 133 | 132 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^𝑦) ∈ Fin) | 
| 134 | 101 | peano2zd 12725 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℤ) | 
| 135 | 134 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ ℤ) | 
| 136 | 36 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ (0[,)+∞)) | 
| 137 |  | digvalnn0 48520 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ (𝑖 +
1) ∈ ℤ ∧ 𝑎
∈ (0[,)+∞)) → ((𝑖 + 1)(digit‘2)𝑎) ∈
ℕ0) | 
| 138 | 100, 135,
136, 137 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈
ℕ0) | 
| 139 | 138 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℂ) | 
| 140 | 41 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈
ℕ0) | 
| 141 |  | peano2nn0 12566 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) | 
| 142 | 92, 141 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈
ℕ0) | 
| 143 | 140, 142 | nn0expcld 14285 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈
ℕ0) | 
| 144 | 143 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℂ) | 
| 145 | 144 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) ∈ ℂ) | 
| 146 | 139, 145 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ) | 
| 147 | 133, 146 | fsumcl 15769 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ) | 
| 148 | 147 | addlidd 11462 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) | 
| 149 | 131, 148 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) | 
| 150 |  | 2cnd 12344 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 2 ∈
ℂ) | 
| 151 | 140, 92 | nn0expcld 14285 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈
ℕ0) | 
| 152 | 151 | nn0cnd 12589 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ) | 
| 153 | 152 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ) | 
| 154 | 108, 153 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) ∈ ℂ) | 
| 155 | 133, 150,
154 | fsummulc1 15821 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 156 | 119, 149,
155 | 3eqtr4d 2787 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 157 | 89, 156 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((0(digit‘2)𝑎)
· 1) + Σ𝑘
∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 158 | 25, 56, 157 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 159 | 158 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) | 
| 160 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (𝑘(digit‘2)(𝑎 / 2)) = (𝑖(digit‘2)(𝑎 / 2))) | 
| 161 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (2↑𝑘) = (2↑𝑖)) | 
| 162 | 160, 161 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑖 → ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) | 
| 163 | 162 | cbvsumv 15732 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Σ𝑘 ∈
(0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) | 
| 164 | 163 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) | 
| 165 | 164 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))) | 
| 166 | 165 | biimpac 478 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) | 
| 167 | 166 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) = (𝑎 / 2)) | 
| 168 | 167 | oveq1d 7446 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
(Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑎 / 2) · 2)) | 
| 169 |  | nncn 12274 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℂ) | 
| 170 |  | 2cnd 12344 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 2 ∈
ℂ) | 
| 171 |  | 2ne0 12370 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ≠
0 | 
| 172 | 171 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 2 ≠
0) | 
| 173 | 169, 170,
172 | divcan1d 12044 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℕ → ((𝑎 / 2) · 2) = 𝑎) | 
| 174 | 173 | ad3antlr 731 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) · 2) = 𝑎) | 
| 175 | 174 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → ((𝑎 / 2) · 2) = 𝑎) | 
| 176 | 159, 168,
175 | 3eqtrrd 2782 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) | 
| 177 | 176 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) | 
| 178 | 177 | imim2i 16 | . . . . . . . . . . . . . . 15
⊢
(((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = 𝑦 → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | 
| 179 | 178 | com13 88 | . . . . . . . . . . . . . 14
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = 𝑦 →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | 
| 180 | 19, 179 | sylbid 240 | . . . . . . . . . . . . 13
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | 
| 181 | 180 | com23 86 | . . . . . . . . . . . 12
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → 𝑎 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | 
| 182 | 181 | exp31 419 | . . . . . . . . . . 11
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((#b‘𝑎) =
(𝑦 + 1) → (𝑦 ∈ ℕ →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → 𝑎 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) | 
| 183 | 182 | com25 99 | . . . . . . . . . 10
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) | 
| 184 | 183 | com14 96 | . . . . . . . . 9
⊢
(((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) | 
| 185 | 12, 184 | syl 17 | . . . . . . . 8
⊢ (((𝑎 / 2) ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) | 
| 186 | 185 | ex 412 | . . . . . . 7
⊢ ((𝑎 / 2) ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) | 
| 187 | 186 | com25 99 | . . . . . 6
⊢ ((𝑎 / 2) ∈ ℕ0
→ (((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) → ((#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) | 
| 188 | 187 | expdcom 414 | . . . . 5
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 ∈ ℕ →
((𝑎 / 2) ∈
ℕ0 → ((#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))) | 
| 189 | 1, 188 | mpid 44 | . . . 4
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 ∈ ℕ →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) | 
| 190 | 189 | impcom 407 | . . 3
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) | 
| 191 | 3, 190 | mpd 15 | . 2
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
(𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))) | 
| 192 | 191 | imp 406 | 1
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧
𝑦 ∈ ℕ) →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |