| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 12513 |
. . . 4
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 / 2) ∈
ℕ0) |
| 2 | | blennn0em1 48538 |
. . . 4
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈
ℕ0) → (#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1)) |
| 3 | 1, 2 | sylan2 593 |
. . 3
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
(#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1)) |
| 4 | | fveqeq2 6890 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑎 / 2) → ((#b‘𝑥) = 𝑦 ↔ (#b‘(𝑎 / 2)) = 𝑦)) |
| 5 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑎 / 2) → 𝑥 = (𝑎 / 2)) |
| 6 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 / 2) → (𝑘(digit‘2)𝑥) = (𝑘(digit‘2)(𝑎 / 2))) |
| 7 | 6 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎 / 2) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) |
| 8 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = (𝑎 / 2) ∧ 𝑘 ∈ (0..^𝑦)) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) |
| 9 | 8 | sumeq2dv 15723 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑎 / 2) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) |
| 10 | 5, 9 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑎 / 2) → (𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))) |
| 11 | 4, 10 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑎 / 2) → (((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) ↔ ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))))) |
| 12 | 11 | rspcva 3604 |
. . . . . . . . 9
⊢ (((𝑎 / 2) ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)))) |
| 13 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
(#b‘𝑎) =
(𝑦 + 1)) |
| 14 | 13 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
((#b‘𝑎)
− 1) = ((𝑦 + 1)
− 1)) |
| 15 | | nncn 12253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 16 | | pncan1 11666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) |
| 18 | 14, 17 | sylan9eq 2791 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘𝑎)
− 1) = 𝑦) |
| 19 | 18 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) ↔
(#b‘(𝑎 /
2)) = 𝑦)) |
| 20 | | nnz 12614 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ) |
| 22 | | fzval3 13755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(0...𝑦) = (0..^(𝑦 + 1))) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0...𝑦) = (0..^(𝑦 + 1))) |
| 24 | 23 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^(𝑦 + 1)) = (0...𝑦)) |
| 25 | 24 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
| 26 | | nnnn0 12513 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 27 | | elnn0uz 12902 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ0
↔ 𝑦 ∈
(ℤ≥‘0)) |
| 28 | 26, 27 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
(ℤ≥‘0)) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
(ℤ≥‘0)) |
| 30 | | 2nn 12318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℕ |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 2 ∈ ℕ) |
| 32 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℤ) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑘 ∈ ℤ) |
| 34 | | nnnn0 12513 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ0) |
| 35 | | nn0rp0 13477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
(0[,)+∞)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
(0[,)+∞)) |
| 37 | 36 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → 𝑎 ∈ (0[,)+∞)) |
| 38 | | digvalnn0 48546 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℤ ∧ 𝑎
∈ (0[,)+∞)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) |
| 39 | 31, 33, 37, 38 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) |
| 40 | 39 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ) |
| 41 | | 2nn0 12523 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 2 ∈
ℕ0 |
| 42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 2 ∈
ℕ0) |
| 43 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℕ0) |
| 44 | 42, 43 | nn0expcld 14269 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈
ℕ0) |
| 45 | 44 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℂ) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → (2↑𝑘) ∈ ℂ) |
| 47 | 40, 46 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ) |
| 48 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎)) |
| 49 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) |
| 50 | 48, 49 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · (2↑0))) |
| 51 | | 2cn 12320 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℂ |
| 52 | | exp0 14088 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2 ∈
ℂ → (2↑0) = 1) |
| 53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(2↑0) = 1 |
| 54 | 53 | oveq2i 7421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((0(digit‘2)𝑎)
· (2↑0)) = ((0(digit‘2)𝑎) · 1) |
| 55 | 50, 54 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1)) |
| 56 | 29, 47, 55 | fsum1p 15774 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
| 57 | | 0dig2nn0e 48559 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ ℕ0
∧ (𝑎 / 2) ∈
ℕ0) → (0(digit‘2)𝑎) = 0) |
| 58 | 34, 1, 57 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
(0(digit‘2)𝑎) =
0) |
| 59 | 58 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = (0 · 1)) |
| 60 | | 1re 11240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 ∈
ℝ |
| 61 | | mul02lem2 11417 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 ∈
ℝ → (0 · 1) = 0) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0
· 1) = 0 |
| 63 | 59, 62 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = 0) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) →
((0(digit‘2)𝑎)
· 1) = 0) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((0(digit‘2)𝑎)
· 1) = 0) |
| 66 | | 1z 12627 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
| 67 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 1 ∈
ℤ) |
| 68 | | 0p1e1 12367 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 + 1) =
1 |
| 69 | 68, 66 | eqeltri 2831 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 + 1)
∈ ℤ |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + 1) ∈
ℤ) |
| 71 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 2 ∈ ℕ) |
| 72 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℤ) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑘 ∈ ℤ) |
| 74 | 36 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ (0[,)+∞)) |
| 75 | 71, 73, 74, 38 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈
ℕ0) |
| 76 | 75 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ) |
| 77 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 2 ∈
ℂ) |
| 78 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ) |
| 79 | 78 | nnnn0d 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ0) |
| 80 | 68 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0 +
1)...𝑦) = (1...𝑦) |
| 81 | 79, 80 | eleq2s 2853 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℕ0) |
| 82 | 77, 81 | expcld 14169 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ((0 + 1)...𝑦) → (2↑𝑘) ∈
ℂ) |
| 83 | 82 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (2↑𝑘) ∈ ℂ) |
| 84 | 76, 83 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ) |
| 85 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (𝑘(digit‘2)𝑎) = ((𝑖 + 1)(digit‘2)𝑎)) |
| 86 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → (2↑𝑘) = (2↑(𝑖 + 1))) |
| 87 | 85, 86 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) |
| 88 | 67, 70, 21, 84, 87 | fsumshftm 15802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) |
| 89 | 65, 88 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((0(digit‘2)𝑎)
· 1) + Σ𝑘
∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))) |
| 90 | 1 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈
ℕ0) |
| 91 | 34 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ ℕ0) |
| 92 | | elfzonn0 13729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℕ0) |
| 93 | 92 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℕ0) |
| 94 | | dignn0ehalf 48564 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 / 2) ∈ ℕ0
∧ 𝑎 ∈
ℕ0 ∧ 𝑖
∈ ℕ0) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2))) |
| 95 | 90, 91, 93, 94 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(𝑎 / 2))) |
| 96 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈ ℂ) |
| 97 | 96, 92 | expp1d 14170 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2)) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2)) |
| 99 | 95, 98 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2))) |
| 100 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℕ) |
| 101 | | elfzoelz 13681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℤ) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℤ) |
| 103 | | nn0rp0 13477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 / 2) ∈ ℕ0
→ (𝑎 / 2) ∈
(0[,)+∞)) |
| 104 | 1, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 / 2) ∈
(0[,)+∞)) |
| 105 | 104 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑎 / 2) ∈ (0[,)+∞)) |
| 106 | | digvalnn0 48546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((2
∈ ℕ ∧ 𝑖
∈ ℤ ∧ (𝑎 /
2) ∈ (0[,)+∞)) → (𝑖(digit‘2)(𝑎 / 2)) ∈
ℕ0) |
| 107 | 100, 102,
105, 106 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈
ℕ0) |
| 108 | 107 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ) |
| 109 | | 2re 12319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 2 ∈
ℝ |
| 110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈ ℝ) |
| 111 | 110, 92 | reexpcld 14186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℝ) |
| 112 | 111 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ) |
| 113 | 112 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ) |
| 114 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℂ) |
| 115 | | mulass 11222 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧
(2↑𝑖) ∈ ℂ
∧ 2 ∈ ℂ) → (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2))) |
| 116 | 115 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑖(digit‘2)(𝑎 / 2)) ∈ ℂ ∧
(2↑𝑖) ∈ ℂ
∧ 2 ∈ ℂ) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 117 | 108, 113,
114, 116 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 118 | 99, 117 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = (((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 119 | 118 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 120 | | 0cn 11232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
ℂ |
| 121 | | pncan1 11666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (0 ∈
ℂ → ((0 + 1) − 1) = 0) |
| 122 | 120, 121 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 + 1)
− 1) = 0 |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℕ → ((0 + 1)
− 1) = 0) |
| 124 | 123 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → (((0 + 1)
− 1)...(𝑦 − 1))
= (0...(𝑦 −
1))) |
| 125 | | fzoval 13682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℤ →
(0..^𝑦) = (0...(𝑦 − 1))) |
| 126 | 125 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ →
(0...(𝑦 − 1)) =
(0..^𝑦)) |
| 127 | 20, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ →
(0...(𝑦 − 1)) =
(0..^𝑦)) |
| 128 | 124, 127 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℕ → (((0 + 1)
− 1)...(𝑦 − 1))
= (0..^𝑦)) |
| 129 | 128 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (((0 + 1) −
1)...(𝑦 − 1)) =
(0..^𝑦)) |
| 130 | 129 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) |
| 131 | 130 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))) |
| 132 | | fzofi 13997 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0..^𝑦) ∈
Fin |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0..^𝑦) ∈ Fin) |
| 134 | 101 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ ℤ) |
| 135 | 134 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ ℤ) |
| 136 | 36 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑎 ∈ (0[,)+∞)) |
| 137 | | digvalnn0 48546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ (𝑖 +
1) ∈ ℤ ∧ 𝑎
∈ (0[,)+∞)) → ((𝑖 + 1)(digit‘2)𝑎) ∈
ℕ0) |
| 138 | 100, 135,
136, 137 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈
ℕ0) |
| 139 | 138 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖 + 1)(digit‘2)𝑎) ∈ ℂ) |
| 140 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → 2 ∈
ℕ0) |
| 141 | | peano2nn0 12546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
| 142 | 92, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈
ℕ0) |
| 143 | 140, 142 | nn0expcld 14269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈
ℕ0) |
| 144 | 143 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → (2↑(𝑖 + 1)) ∈ ℂ) |
| 145 | 144 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑(𝑖 + 1)) ∈ ℂ) |
| 146 | 139, 145 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ) |
| 147 | 133, 146 | fsumcl 15754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) ∈ ℂ) |
| 148 | 147 | addlidd 11441 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) |
| 149 | 131, 148 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = Σ𝑖 ∈ (0..^𝑦)(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) |
| 150 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 2 ∈
ℂ) |
| 151 | 140, 92 | nn0expcld 14269 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈
ℕ0) |
| 152 | 151 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ) |
| 153 | 152 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ) |
| 154 | 108, 153 | mulcld 11260 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) ∈ ℂ) |
| 155 | 133, 150,
154 | fsummulc1 15806 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 156 | 119, 149,
155 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → (0 + Σ𝑖 ∈ (((0 + 1) −
1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 157 | 89, 156 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((0(digit‘2)𝑎)
· 1) + Σ𝑘
∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 158 | 25, 56, 157 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 159 | 158 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2)) |
| 160 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (𝑘(digit‘2)(𝑎 / 2)) = (𝑖(digit‘2)(𝑎 / 2))) |
| 161 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (2↑𝑘) = (2↑𝑖)) |
| 162 | 160, 161 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑖 → ((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = ((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) |
| 163 | 162 | cbvsumv 15717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Σ𝑘 ∈
(0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) |
| 164 | 163 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) |
| 165 | 164 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ↔ (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)))) |
| 166 | 165 | biimpac 478 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → (𝑎 / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖))) |
| 167 | 166 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) = (𝑎 / 2)) |
| 168 | 167 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) →
(Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)(𝑎 / 2)) · (2↑𝑖)) · 2) = ((𝑎 / 2) · 2)) |
| 169 | | nncn 12253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℂ) |
| 170 | | 2cnd 12323 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 2 ∈
ℂ) |
| 171 | | 2ne0 12349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ≠
0 |
| 172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ ℕ → 2 ≠
0) |
| 173 | 169, 170,
172 | divcan1d 12023 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℕ → ((𝑎 / 2) · 2) = 𝑎) |
| 174 | 173 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → ((𝑎 / 2) · 2) = 𝑎) |
| 175 | 174 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → ((𝑎 / 2) · 2) = 𝑎) |
| 176 | 159, 168,
175 | 3eqtrrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) ∧ ((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))) |
| 177 | 176 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘)) → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) |
| 178 | 177 | imim2i 16 |
. . . . . . . . . . . . . . 15
⊢
(((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) = 𝑦 → (((((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) ∧
(#b‘𝑎) =
(𝑦 + 1)) ∧ 𝑦 ∈ ℕ) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
| 179 | 178 | com13 88 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = 𝑦 →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
| 180 | 19, 179 | sylbid 240 |
. . . . . . . . . . . . 13
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
| 181 | 180 | com23 86 |
. . . . . . . . . . . 12
⊢
(((((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) ∧ (#b‘𝑎) = (𝑦 + 1)) ∧ 𝑦 ∈ ℕ) →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → 𝑎 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |
| 182 | 181 | exp31 419 |
. . . . . . . . . . 11
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((#b‘𝑎) =
(𝑦 + 1) → (𝑦 ∈ ℕ →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → 𝑎 =
Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) |
| 183 | 182 | com25 99 |
. . . . . . . . . 10
⊢ (((𝑎 / 2) ∈ ℕ ∧ 𝑎 ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(((#b‘(𝑎 /
2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) |
| 184 | 183 | com14 96 |
. . . . . . . . 9
⊢
(((#b‘(𝑎 / 2)) = 𝑦 → (𝑎 / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)(𝑎 / 2)) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) |
| 185 | 12, 184 | syl 17 |
. . . . . . . 8
⊢ (((𝑎 / 2) ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) |
| 186 | 185 | ex 412 |
. . . . . . 7
⊢ ((𝑎 / 2) ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘(𝑎 / 2)) =
((#b‘𝑎)
− 1) → (𝑦 ∈
ℕ → (((𝑎 / 2)
∈ ℕ ∧ 𝑎
∈ ℕ) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) |
| 187 | 186 | com25 99 |
. . . . . 6
⊢ ((𝑎 / 2) ∈ ℕ0
→ (((𝑎 / 2) ∈
ℕ ∧ 𝑎 ∈
ℕ) → ((#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) |
| 188 | 187 | expdcom 414 |
. . . . 5
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 ∈ ℕ →
((𝑎 / 2) ∈
ℕ0 → ((#b‘(𝑎 / 2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))) |
| 189 | 1, 188 | mpid 44 |
. . . 4
⊢ ((𝑎 / 2) ∈ ℕ →
(𝑎 ∈ ℕ →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))) |
| 190 | 189 | impcom 407 |
. . 3
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
((#b‘(𝑎 /
2)) = ((#b‘𝑎) − 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0
((#b‘𝑥) =
𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))) |
| 191 | 3, 190 | mpd 15 |
. 2
⊢ ((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) →
(𝑦 ∈ ℕ →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))) |
| 192 | 191 | imp 406 |
1
⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧
𝑦 ∈ ℕ) →
(∀𝑥 ∈
ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) |