MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpf1 Structured version   Visualization version   GIF version

Theorem pm2mpf1 22686
Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)

Proof of Theorem pm2mpf1
Dummy variables 𝑛 𝑘 𝑎 𝑏 𝑖 𝑗 𝑢 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
10 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpf 22685 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
127matring 22330 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1312adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝐴 ∈ Ring)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 22684 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
15143expa 1118 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
1615adantrr 717 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) ∈ 𝐿)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 22684 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) ∈ 𝐿)
18173expia 1121 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤𝐵 → (𝑇𝑤) ∈ 𝐿))
1918adantld 490 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢𝐵𝑤𝐵) → (𝑇𝑤) ∈ 𝐿))
2019imp 406 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) ∈ 𝐿)
21 eqid 2729 . . . . . . 7 (coe1‘(𝑇𝑢)) = (coe1‘(𝑇𝑢))
22 eqid 2729 . . . . . . 7 (coe1‘(𝑇𝑤)) = (coe1‘(𝑇𝑤))
238, 10, 21, 22ply1coe1eq 22187 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑇𝑢) = (𝑇𝑤)))
2423bicomd 223 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
2513, 16, 20, 24syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
26 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑁 ∈ Fin)
27 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑅 ∈ Ring)
28 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑢𝐵)
291, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22683 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3026, 27, 28, 29syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3130ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3231fveq2d 6862 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝑇𝑢)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋))))))
3332fveq1d 6860 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
34 simplll 774 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3528adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
3635anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢𝐵𝑛 ∈ ℕ0))
371, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 22681 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3834, 36, 37syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3933, 38eqtrd 2764 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = (𝑢 decompPMat 𝑛))
40 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤𝐵)
411, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22683 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4226, 27, 40, 41syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4342fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (coe1‘(𝑇𝑤)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋))))))
4443fveq1d 6860 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4544ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4640adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
4746anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤𝐵𝑛 ∈ ℕ0))
481, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 22681 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
4934, 47, 48syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
5045, 49eqtrd 2764 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = (𝑤 decompPMat 𝑛))
5139, 50eqeq12d 2745 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛)))
522, 3decpmatval 22652 . . . . . . . . . . . . . . . . 17 ((𝑢𝐵𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
5328, 52sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
542, 3decpmatval 22652 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5540, 54sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5653, 55eqeq12d 2745 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))))
57 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
58 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝐴) = (Base‘𝐴)
59 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
60 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
61 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
62 simp2 1137 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
63 simp3 1138 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
643eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6564biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝐵𝑤𝐵) → 𝑢 ∈ (Base‘𝐶))
6766ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶))
68673ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢 ∈ (Base‘𝐶))
6968, 3eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢𝐵)
702, 61, 3, 62, 63, 69matecld 22313 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃))
71 simp1r 1199 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑛 ∈ ℕ0)
72 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗))
7372, 61, 1, 57coe1fvalcl 22097 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
7470, 71, 73syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
757, 57, 58, 59, 60, 74matbas2d 22310 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴))
763eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7776biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7877ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤 ∈ (Base‘𝐶))
7978adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶))
80793ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤 ∈ (Base‘𝐶))
8180, 3eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤𝐵)
822, 61, 3, 62, 63, 81matecld 22313 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃))
83 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗))
8483, 61, 1, 57coe1fvalcl 22097 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
8582, 71, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
867, 57, 58, 59, 60, 85matbas2d 22310 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴))
877, 58eqmat 22311 . . . . . . . . . . . . . . . 16 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8875, 86, 87syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8956, 88bitrd 279 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
9089adantlr 715 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
91 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦))
92 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))
9391, 92eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
94 oveq2 7395 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏))
95 oveq2 7395 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
9694, 95eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)))
9793, 96rspc2va 3600 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
98 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
99 oveq12 7396 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏))
10099fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏)))
101100fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
103 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎𝑁)
104 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏𝑁)
105 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V)
10698, 102, 103, 104, 105ovmpod 7541 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
107 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
108 oveq12 7396 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏))
109108fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏)))
110109fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
111110adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
112 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V)
113107, 111, 103, 104, 112ovmpod 7541 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
114106, 113eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
115114biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
116115exp31 419 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
117116com14 96 . . . . . . . . . . . . . . . . . . 19 ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
11897, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
119118ex 412 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
120119com25 99 . . . . . . . . . . . . . . . 16 ((𝑎𝑁𝑏𝑁) → ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
121120pm2.43i 52 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
122121impcom 407 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))
123122imp 406 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12490, 123sylbid 240 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12551, 124sylbid 240 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
126125ralimdva 3145 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
127126impancom 451 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ((𝑎𝑁𝑏𝑁) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
128127imp 406 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
12927ad2antrr 726 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ Ring)
130 simprl 770 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
131 simprr 772 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
13266ad2antlr 727 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶))
133132adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢 ∈ (Base‘𝐶))
134133, 3eleqtrrdi 2839 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
1352, 61, 3, 130, 131, 134matecld 22313 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃))
13678ad2antrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤 ∈ (Base‘𝐶))
137136, 3eleqtrrdi 2839 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
1382, 61, 3, 130, 131, 137matecld 22313 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃))
139 eqid 2729 . . . . . . . . . . 11 (coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏))
140 eqid 2729 . . . . . . . . . . 11 (coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏))
1411, 61, 139, 140ply1coe1eq 22187 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
142141bicomd 223 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
143129, 135, 138, 142syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
144128, 143mpbird 257 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
145144ralrimivva 3180 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
1462, 3eqmat 22311 . . . . . . 7 ((𝑢𝐵𝑤𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
147146ad2antlr 727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
148145, 147mpbird 257 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 = 𝑤)
149148ex 412 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → 𝑢 = 𝑤))
15025, 149sylbid 240 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
151150ralrimivva 3180 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
152 dff13 7229 . 2 (𝑇:𝐵1-1𝐿 ↔ (𝑇:𝐵𝐿 ∧ ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤)))
15311, 151, 152sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cmpt 5188  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  0cn0 12442  Basecbs 17179   ·𝑠 cvsca 17224   Σg cgsu 17403  .gcmg 18999  mulGrpcmgp 20049  Ringcrg 20142  var1cv1 22060  Poly1cpl1 22061  coe1cco1 22062   Mat cmat 22294   decompPMat cdecpmat 22649   pMatToMatPoly cpm2mp 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mamu 22278  df-mat 22295  df-decpmat 22650  df-pm2mp 22680
This theorem is referenced by:  pm2mpf1o  22702
  Copyright terms: Public domain W3C validator