| Step | Hyp | Ref
| Expression |
| 1 | | pm2mpval.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | | pm2mpval.c |
. . 3
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 3 | | pm2mpval.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 4 | | pm2mpval.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝑄) |
| 5 | | pm2mpval.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
| 6 | | pm2mpval.x |
. . 3
⊢ 𝑋 = (var1‘𝐴) |
| 7 | | pm2mpval.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 8 | | pm2mpval.q |
. . 3
⊢ 𝑄 = (Poly1‘𝐴) |
| 9 | | pm2mpval.t |
. . 3
⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| 10 | | pm2mpcl.l |
. . 3
⊢ 𝐿 = (Base‘𝑄) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpf 22804 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) |
| 12 | 7 | matring 22449 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 13 | 12 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐴 ∈ Ring) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpcl 22803 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) ∈ 𝐿) |
| 15 | 14 | 3expa 1119 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) ∈ 𝐿) |
| 16 | 15 | adantrr 717 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑢) ∈ 𝐿) |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpcl 22803 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) ∈ 𝐿) |
| 18 | 17 | 3expia 1122 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤 ∈ 𝐵 → (𝑇‘𝑤) ∈ 𝐿)) |
| 19 | 18 | adantld 490 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) ∈ 𝐿)) |
| 20 | 19 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑤) ∈ 𝐿) |
| 21 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘(𝑇‘𝑢)) = (coe1‘(𝑇‘𝑢)) |
| 22 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘(𝑇‘𝑤)) = (coe1‘(𝑇‘𝑤)) |
| 23 | 8, 10, 21, 22 | ply1coe1eq 22304 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ (𝑇‘𝑢) ∈ 𝐿 ∧ (𝑇‘𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) ↔ (𝑇‘𝑢) = (𝑇‘𝑤))) |
| 24 | 23 | bicomd 223 |
. . . . 5
⊢ ((𝐴 ∈ Ring ∧ (𝑇‘𝑢) ∈ 𝐿 ∧ (𝑇‘𝑤) ∈ 𝐿) → ((𝑇‘𝑢) = (𝑇‘𝑤) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛))) |
| 25 | 13, 16, 20, 24 | syl3anc 1373 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑇‘𝑢) = (𝑇‘𝑤) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛))) |
| 26 | | simpll 767 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑁 ∈ Fin) |
| 27 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 28 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpfval 22802 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 30 | 26, 27, 28, 29 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(coe1‘(𝑇‘𝑢)) = (coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 33 | 32 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
| 34 | | simplll 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 35 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ 𝐵) |
| 36 | 35 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢 ∈ 𝐵 ∧ 𝑛 ∈
ℕ0)) |
| 37 | 1, 2, 3, 4, 5, 6, 7, 8 | pm2mpf1lem 22800 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛)) |
| 38 | 34, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛)) |
| 39 | 33, 38 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑢))‘𝑛) = (𝑢 decompPMat 𝑛)) |
| 40 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
| 41 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpfval 22802 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑤 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 42 | 26, 27, 40, 41 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑤 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 43 | 42 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (coe1‘(𝑇‘𝑤)) = (coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
| 44 | 43 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((coe1‘(𝑇‘𝑤))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑤))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
| 46 | 40 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ 𝐵) |
| 47 | 46 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤 ∈ 𝐵 ∧ 𝑛 ∈
ℕ0)) |
| 48 | 1, 2, 3, 4, 5, 6, 7, 8 | pm2mpf1lem 22800 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛)) |
| 49 | 34, 47, 48 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛)) |
| 50 | 45, 49 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑤))‘𝑛) = (𝑤 decompPMat 𝑛)) |
| 51 | 39, 50 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛))) |
| 52 | 2, 3 | decpmatval 22771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
| 53 | 28, 52 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
| 54 | 2, 3 | decpmatval 22771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
| 55 | 40, 54 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
| 56 | 53, 55 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))) |
| 57 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 58 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 59 | | simplll 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
| 60 | | simpllr 776 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 61 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 62 | | simp2 1138 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 63 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 64 | 3 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ 𝐵 ↔ 𝑢 ∈ (Base‘𝐶)) |
| 65 | 64 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ 𝐵 → 𝑢 ∈ (Base‘𝐶)) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → 𝑢 ∈ (Base‘𝐶)) |
| 67 | 66 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶)) |
| 68 | 67 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑢 ∈ (Base‘𝐶)) |
| 69 | 68, 3 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑢 ∈ 𝐵) |
| 70 | 2, 61, 3, 62, 63, 69 | matecld 22432 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃)) |
| 71 | | simp1r 1199 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑛 ∈ ℕ0) |
| 72 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗)) |
| 73 | 72, 61, 1, 57 | coe1fvalcl 22214 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅)) |
| 74 | 70, 71, 73 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅)) |
| 75 | 7, 57, 58, 59, 60, 74 | matbas2d 22429 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴)) |
| 76 | 3 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ 𝐵 ↔ 𝑤 ∈ (Base‘𝐶)) |
| 77 | 76 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ (Base‘𝐶)) |
| 78 | 77 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐶)) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶)) |
| 80 | 79 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑤 ∈ (Base‘𝐶)) |
| 81 | 80, 3 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑤 ∈ 𝐵) |
| 82 | 2, 61, 3, 62, 63, 81 | matecld 22432 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃)) |
| 83 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗)) |
| 84 | 83, 61, 1, 57 | coe1fvalcl 22214 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅)) |
| 85 | 82, 71, 84 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅)) |
| 86 | 7, 57, 58, 59, 60, 85 | matbas2d 22429 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) |
| 87 | 7, 58 | eqmat 22430 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
| 88 | 75, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
| 89 | 56, 88 | bitrd 279 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
| 90 | 89 | adantlr 715 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
| 91 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦)) |
| 92 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) |
| 93 | 91, 92 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → ((𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
| 94 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏)) |
| 95 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)) |
| 96 | 94, 95 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))) |
| 97 | 93, 96 | rspc2va 3634 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)) |
| 98 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
| 99 | | oveq12 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏)) |
| 100 | 99 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏))) |
| 101 | 100 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
| 103 | | simplll 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎 ∈ 𝑁) |
| 104 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏 ∈ 𝑁) |
| 105 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V) |
| 106 | 98, 102, 103, 104, 105 | ovmpod 7585 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
| 107 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
| 108 | | oveq12 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏)) |
| 109 | 108 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏))) |
| 110 | 109 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
| 112 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V) |
| 113 | 107, 111,
103, 104, 112 | ovmpod 7585 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
| 114 | 106, 113 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 115 | 114 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 116 | 115 | exp31 419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
| 117 | 116 | com14 96 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
| 118 | 97, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
| 119 | 118 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))) |
| 120 | 119 | com25 99 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))) |
| 121 | 120 | pm2.43i 52 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
| 122 | 121 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))) |
| 123 | 122 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 124 | 90, 123 | sylbid 240 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 125 | 51, 124 | sylbid 240 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 126 | 125 | ralimdva 3167 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 127 | 126 | impancom 451 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 128 | 127 | imp 406 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
| 129 | 27 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 130 | | simprl 771 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) |
| 131 | | simprr 773 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) |
| 132 | 66 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶)) |
| 133 | 132 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ (Base‘𝐶)) |
| 134 | 133, 3 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ 𝐵) |
| 135 | 2, 61, 3, 130, 131, 134 | matecld 22432 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃)) |
| 136 | 78 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ (Base‘𝐶)) |
| 137 | 136, 3 | eleqtrrdi 2852 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ 𝐵) |
| 138 | 2, 61, 3, 130, 131, 137 | matecld 22432 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃)) |
| 139 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏)) |
| 140 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏)) |
| 141 | 1, 61, 139, 140 | ply1coe1eq 22304 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
| 142 | 141 | bicomd 223 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 143 | 129, 135,
138, 142 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
| 144 | 128, 143 | mpbird 257 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏)) |
| 145 | 144 | ralrimivva 3202 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)) |
| 146 | 2, 3 | eqmat 22430 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
| 147 | 146 | ad2antlr 727 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
| 148 | 145, 147 | mpbird 257 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → 𝑢 = 𝑤) |
| 149 | 148 | ex 412 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → 𝑢 = 𝑤)) |
| 150 | 25, 149 | sylbid 240 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤)) |
| 151 | 150 | ralrimivva 3202 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤)) |
| 152 | | dff13 7275 |
. 2
⊢ (𝑇:𝐵–1-1→𝐿 ↔ (𝑇:𝐵⟶𝐿 ∧ ∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤))) |
| 153 | 11, 151, 152 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1→𝐿) |