MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpf1 Structured version   Visualization version   GIF version

Theorem pm2mpf1 22805
Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)

Proof of Theorem pm2mpf1
Dummy variables 𝑛 𝑘 𝑎 𝑏 𝑖 𝑗 𝑢 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
10 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpf 22804 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
127matring 22449 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1312adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝐴 ∈ Ring)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 22803 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
15143expa 1119 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
1615adantrr 717 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) ∈ 𝐿)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 22803 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) ∈ 𝐿)
18173expia 1122 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤𝐵 → (𝑇𝑤) ∈ 𝐿))
1918adantld 490 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢𝐵𝑤𝐵) → (𝑇𝑤) ∈ 𝐿))
2019imp 406 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) ∈ 𝐿)
21 eqid 2737 . . . . . . 7 (coe1‘(𝑇𝑢)) = (coe1‘(𝑇𝑢))
22 eqid 2737 . . . . . . 7 (coe1‘(𝑇𝑤)) = (coe1‘(𝑇𝑤))
238, 10, 21, 22ply1coe1eq 22304 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑇𝑢) = (𝑇𝑤)))
2423bicomd 223 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
2513, 16, 20, 24syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
26 simpll 767 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑁 ∈ Fin)
27 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑅 ∈ Ring)
28 simprl 771 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑢𝐵)
291, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22802 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3026, 27, 28, 29syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3130ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3231fveq2d 6910 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝑇𝑢)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋))))))
3332fveq1d 6908 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
34 simplll 775 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3528adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
3635anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢𝐵𝑛 ∈ ℕ0))
371, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 22800 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3834, 36, 37syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3933, 38eqtrd 2777 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = (𝑢 decompPMat 𝑛))
40 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤𝐵)
411, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 22802 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4226, 27, 40, 41syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4342fveq2d 6910 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (coe1‘(𝑇𝑤)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋))))))
4443fveq1d 6908 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4544ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4640adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
4746anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤𝐵𝑛 ∈ ℕ0))
481, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 22800 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
4934, 47, 48syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
5045, 49eqtrd 2777 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = (𝑤 decompPMat 𝑛))
5139, 50eqeq12d 2753 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛)))
522, 3decpmatval 22771 . . . . . . . . . . . . . . . . 17 ((𝑢𝐵𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
5328, 52sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
542, 3decpmatval 22771 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5540, 54sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5653, 55eqeq12d 2753 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))))
57 eqid 2737 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
58 eqid 2737 . . . . . . . . . . . . . . . . 17 (Base‘𝐴) = (Base‘𝐴)
59 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
60 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
61 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
62 simp2 1138 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
63 simp3 1139 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
643eleq2i 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6564biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝐵𝑤𝐵) → 𝑢 ∈ (Base‘𝐶))
6766ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶))
68673ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢 ∈ (Base‘𝐶))
6968, 3eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢𝐵)
702, 61, 3, 62, 63, 69matecld 22432 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃))
71 simp1r 1199 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑛 ∈ ℕ0)
72 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗))
7372, 61, 1, 57coe1fvalcl 22214 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
7470, 71, 73syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
757, 57, 58, 59, 60, 74matbas2d 22429 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴))
763eleq2i 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7776biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7877ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤 ∈ (Base‘𝐶))
7978adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶))
80793ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤 ∈ (Base‘𝐶))
8180, 3eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤𝐵)
822, 61, 3, 62, 63, 81matecld 22432 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃))
83 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗))
8483, 61, 1, 57coe1fvalcl 22214 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
8582, 71, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
867, 57, 58, 59, 60, 85matbas2d 22429 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴))
877, 58eqmat 22430 . . . . . . . . . . . . . . . 16 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8875, 86, 87syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8956, 88bitrd 279 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
9089adantlr 715 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
91 oveq1 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦))
92 oveq1 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))
9391, 92eqeq12d 2753 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
94 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏))
95 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
9694, 95eqeq12d 2753 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)))
9793, 96rspc2va 3634 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
98 eqidd 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
99 oveq12 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏))
10099fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏)))
101100fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
103 simplll 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎𝑁)
104 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏𝑁)
105 fvexd 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V)
10698, 102, 103, 104, 105ovmpod 7585 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
107 eqidd 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
108 oveq12 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏))
109108fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏)))
110109fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
111110adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
112 fvexd 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V)
113107, 111, 103, 104, 112ovmpod 7585 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
114106, 113eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
115114biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
116115exp31 419 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
117116com14 96 . . . . . . . . . . . . . . . . . . 19 ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
11897, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
119118ex 412 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
120119com25 99 . . . . . . . . . . . . . . . 16 ((𝑎𝑁𝑏𝑁) → ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
121120pm2.43i 52 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
122121impcom 407 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))
123122imp 406 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12490, 123sylbid 240 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12551, 124sylbid 240 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
126125ralimdva 3167 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
127126impancom 451 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ((𝑎𝑁𝑏𝑁) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
128127imp 406 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
12927ad2antrr 726 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ Ring)
130 simprl 771 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
131 simprr 773 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
13266ad2antlr 727 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶))
133132adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢 ∈ (Base‘𝐶))
134133, 3eleqtrrdi 2852 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
1352, 61, 3, 130, 131, 134matecld 22432 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃))
13678ad2antrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤 ∈ (Base‘𝐶))
137136, 3eleqtrrdi 2852 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
1382, 61, 3, 130, 131, 137matecld 22432 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃))
139 eqid 2737 . . . . . . . . . . 11 (coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏))
140 eqid 2737 . . . . . . . . . . 11 (coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏))
1411, 61, 139, 140ply1coe1eq 22304 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
142141bicomd 223 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
143129, 135, 138, 142syl3anc 1373 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
144128, 143mpbird 257 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
145144ralrimivva 3202 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
1462, 3eqmat 22430 . . . . . . 7 ((𝑢𝐵𝑤𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
147146ad2antlr 727 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
148145, 147mpbird 257 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 = 𝑤)
149148ex 412 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → 𝑢 = 𝑤))
15025, 149sylbid 240 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
151150ralrimivva 3202 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
152 dff13 7275 . 2 (𝑇:𝐵1-1𝐿 ↔ (𝑇:𝐵𝐿 ∧ ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤)))
15311, 151, 152sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cmpt 5225  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  0cn0 12526  Basecbs 17247   ·𝑠 cvsca 17301   Σg cgsu 17485  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179   Mat cmat 22411   decompPMat cdecpmat 22768   pMatToMatPoly cpm2mp 22798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mamu 22395  df-mat 22412  df-decpmat 22769  df-pm2mp 22799
This theorem is referenced by:  pm2mpf1o  22821
  Copyright terms: Public domain W3C validator