Step | Hyp | Ref
| Expression |
1 | | pm2mpval.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | pm2mpval.c |
. . 3
⊢ 𝐶 = (𝑁 Mat 𝑃) |
3 | | pm2mpval.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
4 | | pm2mpval.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝑄) |
5 | | pm2mpval.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
6 | | pm2mpval.x |
. . 3
⊢ 𝑋 = (var1‘𝐴) |
7 | | pm2mpval.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
8 | | pm2mpval.q |
. . 3
⊢ 𝑄 = (Poly1‘𝐴) |
9 | | pm2mpval.t |
. . 3
⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
10 | | pm2mpcl.l |
. . 3
⊢ 𝐿 = (Base‘𝑄) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpf 21947 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) |
12 | 7 | matring 21592 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
13 | 12 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐴 ∈ Ring) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpcl 21946 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) ∈ 𝐿) |
15 | 14 | 3expa 1117 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) ∈ 𝐿) |
16 | 15 | adantrr 714 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑢) ∈ 𝐿) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpcl 21946 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) ∈ 𝐿) |
18 | 17 | 3expia 1120 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤 ∈ 𝐵 → (𝑇‘𝑤) ∈ 𝐿)) |
19 | 18 | adantld 491 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) ∈ 𝐿)) |
20 | 19 | imp 407 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑤) ∈ 𝐿) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(coe1‘(𝑇‘𝑢)) = (coe1‘(𝑇‘𝑢)) |
22 | | eqid 2738 |
. . . . . . 7
⊢
(coe1‘(𝑇‘𝑤)) = (coe1‘(𝑇‘𝑤)) |
23 | 8, 10, 21, 22 | ply1coe1eq 21469 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ (𝑇‘𝑢) ∈ 𝐿 ∧ (𝑇‘𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) ↔ (𝑇‘𝑢) = (𝑇‘𝑤))) |
24 | 23 | bicomd 222 |
. . . . 5
⊢ ((𝐴 ∈ Ring ∧ (𝑇‘𝑢) ∈ 𝐿 ∧ (𝑇‘𝑤) ∈ 𝐿) → ((𝑇‘𝑢) = (𝑇‘𝑤) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛))) |
25 | 13, 16, 20, 24 | syl3anc 1370 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑇‘𝑢) = (𝑇‘𝑤) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛))) |
26 | | simpll 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑁 ∈ Fin) |
27 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑅 ∈ Ring) |
28 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpfval 21945 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
30 | 26, 27, 28, 29 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
31 | 30 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇‘𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑢 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
32 | 31 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(coe1‘(𝑇‘𝑢)) = (coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
33 | 32 | fveq1d 6776 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
34 | | simplll 772 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
35 | 28 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ 𝐵) |
36 | 35 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢 ∈ 𝐵 ∧ 𝑛 ∈
ℕ0)) |
37 | 1, 2, 3, 4, 5, 6, 7, 8 | pm2mpf1lem 21943 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛)) |
38 | 34, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛)) |
39 | 33, 38 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑢))‘𝑛) = (𝑢 decompPMat 𝑛)) |
40 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
41 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | pm2mpfval 21945 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵) → (𝑇‘𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑤 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
42 | 26, 27, 40, 41 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑇‘𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((𝑤 decompPMat
𝑘) ∗ (𝑘 ↑ 𝑋))))) |
43 | 42 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (coe1‘(𝑇‘𝑤)) = (coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))) |
44 | 43 | fveq1d 6776 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((coe1‘(𝑇‘𝑤))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
45 | 44 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑤))‘𝑛) = ((coe1‘(𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛)) |
46 | 40 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ 𝐵) |
47 | 46 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤 ∈ 𝐵 ∧ 𝑛 ∈
ℕ0)) |
48 | 1, 2, 3, 4, 5, 6, 7, 8 | pm2mpf1lem 21943 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0)) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛)) |
49 | 34, 47, 48 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑄
Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛)) |
50 | 45, 49 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑇‘𝑤))‘𝑛) = (𝑤 decompPMat 𝑛)) |
51 | 39, 50 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛))) |
52 | 2, 3 | decpmatval 21914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
53 | 28, 52 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
54 | 2, 3 | decpmatval 21914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
55 | 40, 54 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
56 | 53, 55 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))) |
57 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝑅) =
(Base‘𝑅) |
58 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐴) =
(Base‘𝐴) |
59 | | simplll 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin) |
60 | | simpllr 773 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
61 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) |
62 | | simp2 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
63 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
64 | 3 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ 𝐵 ↔ 𝑢 ∈ (Base‘𝐶)) |
65 | 64 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ 𝐵 → 𝑢 ∈ (Base‘𝐶)) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → 𝑢 ∈ (Base‘𝐶)) |
67 | 66 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶)) |
68 | 67 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑢 ∈ (Base‘𝐶)) |
69 | 68, 3 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑢 ∈ 𝐵) |
70 | 2, 61, 3, 62, 63, 69 | matecld 21575 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃)) |
71 | | simp1r 1197 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑛 ∈ ℕ0) |
72 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗)) |
73 | 72, 61, 1, 57 | coe1fvalcl 21383 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅)) |
74 | 70, 71, 73 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅)) |
75 | 7, 57, 58, 59, 60, 74 | matbas2d 21572 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴)) |
76 | 3 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ 𝐵 ↔ 𝑤 ∈ (Base‘𝐶)) |
77 | 76 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ (Base‘𝐶)) |
78 | 77 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐶)) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶)) |
80 | 79 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑤 ∈ (Base‘𝐶)) |
81 | 80, 3 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑤 ∈ 𝐵) |
82 | 2, 61, 3, 62, 63, 81 | matecld 21575 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃)) |
83 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗)) |
84 | 83, 61, 1, 57 | coe1fvalcl 21383 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅)) |
85 | 82, 71, 84 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅)) |
86 | 7, 57, 58, 59, 60, 85 | matbas2d 21572 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) |
87 | 7, 58 | eqmat 21573 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
88 | 75, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
89 | 56, 88 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
90 | 89 | adantlr 712 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
91 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦)) |
92 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) |
93 | 91, 92 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → ((𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))) |
94 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏)) |
95 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)) |
96 | 94, 95 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))) |
97 | 93, 96 | rspc2va 3571 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)) |
98 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))) |
99 | | oveq12 7284 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏)) |
100 | 99 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏))) |
101 | 100 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
102 | 101 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
103 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎 ∈ 𝑁) |
104 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏 ∈ 𝑁) |
105 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V) |
106 | 98, 102, 103, 104, 105 | ovmpod 7425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛)) |
107 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))) |
108 | | oveq12 7284 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏)) |
109 | 108 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏))) |
110 | 109 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
112 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V) |
113 | 107, 111,
103, 104, 112 | ovmpod 7425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
114 | 106, 113 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
115 | 114 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
116 | 115 | exp31 420 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
117 | 116 | com14 96 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
118 | 97, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
119 | 118 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))) |
120 | 119 | com25 99 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))) |
121 | 120 | pm2.43i 52 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))) |
122 | 121 | impcom 408 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑛 ∈ ℕ0 →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))) |
123 | 122 | imp 407 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
124 | 90, 123 | sylbid 239 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
125 | 51, 124 | sylbid 239 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
126 | 125 | ralimdva 3108 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
127 | 126 | impancom 452 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
128 | 127 | imp 407 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)) |
129 | 27 | ad2antrr 723 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑅 ∈ Ring) |
130 | | simprl 768 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) |
131 | | simprr 770 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) |
132 | 66 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶)) |
133 | 132 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ (Base‘𝐶)) |
134 | 133, 3 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑢 ∈ 𝐵) |
135 | 2, 61, 3, 130, 131, 134 | matecld 21575 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃)) |
136 | 78 | ad2antrr 723 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ (Base‘𝐶)) |
137 | 136, 3 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑤 ∈ 𝐵) |
138 | 2, 61, 3, 130, 131, 137 | matecld 21575 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃)) |
139 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏)) |
140 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏)) |
141 | 1, 61, 139, 140 | ply1coe1eq 21469 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
142 | 141 | bicomd 222 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
143 | 129, 135,
138, 142 | syl3anc 1370 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0
((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))) |
144 | 128, 143 | mpbird 256 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏)) |
145 | 144 | ralrimivva 3123 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)) |
146 | 2, 3 | eqmat 21573 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
147 | 146 | ad2antlr 724 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))) |
148 | 145, 147 | mpbird 256 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛)) → 𝑢 = 𝑤) |
149 | 148 | ex 413 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0
((coe1‘(𝑇‘𝑢))‘𝑛) = ((coe1‘(𝑇‘𝑤))‘𝑛) → 𝑢 = 𝑤)) |
150 | 25, 149 | sylbid 239 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤)) |
151 | 150 | ralrimivva 3123 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤)) |
152 | | dff13 7128 |
. 2
⊢ (𝑇:𝐵–1-1→𝐿 ↔ (𝑇:𝐵⟶𝐿 ∧ ∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑇‘𝑢) = (𝑇‘𝑤) → 𝑢 = 𝑤))) |
153 | 11, 151, 152 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–1-1→𝐿) |