MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpf1 Structured version   Visualization version   GIF version

Theorem pm2mpf1 21958
Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpval.p 𝑃 = (Poly1𝑅)
pm2mpval.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpval.b 𝐵 = (Base‘𝐶)
pm2mpval.m = ( ·𝑠𝑄)
pm2mpval.e = (.g‘(mulGrp‘𝑄))
pm2mpval.x 𝑋 = (var1𝐴)
pm2mpval.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpval.q 𝑄 = (Poly1𝐴)
pm2mpval.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
pm2mpcl.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
pm2mpf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)

Proof of Theorem pm2mpf1
Dummy variables 𝑛 𝑘 𝑎 𝑏 𝑖 𝑗 𝑢 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpval.p . . 3 𝑃 = (Poly1𝑅)
2 pm2mpval.c . . 3 𝐶 = (𝑁 Mat 𝑃)
3 pm2mpval.b . . 3 𝐵 = (Base‘𝐶)
4 pm2mpval.m . . 3 = ( ·𝑠𝑄)
5 pm2mpval.e . . 3 = (.g‘(mulGrp‘𝑄))
6 pm2mpval.x . . 3 𝑋 = (var1𝐴)
7 pm2mpval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
8 pm2mpval.q . . 3 𝑄 = (Poly1𝐴)
9 pm2mpval.t . . 3 𝑇 = (𝑁 pMatToMatPoly 𝑅)
10 pm2mpcl.l . . 3 𝐿 = (Base‘𝑄)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpf 21957 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐿)
127matring 21602 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1312adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝐴 ∈ Ring)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 21956 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
15143expa 1117 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑢𝐵) → (𝑇𝑢) ∈ 𝐿)
1615adantrr 714 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) ∈ 𝐿)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10pm2mpcl 21956 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) ∈ 𝐿)
18173expia 1120 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑤𝐵 → (𝑇𝑤) ∈ 𝐿))
1918adantld 491 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑢𝐵𝑤𝐵) → (𝑇𝑤) ∈ 𝐿))
2019imp 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) ∈ 𝐿)
21 eqid 2738 . . . . . . 7 (coe1‘(𝑇𝑢)) = (coe1‘(𝑇𝑢))
22 eqid 2738 . . . . . . 7 (coe1‘(𝑇𝑤)) = (coe1‘(𝑇𝑤))
238, 10, 21, 22ply1coe1eq 21479 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑇𝑢) = (𝑇𝑤)))
2423bicomd 222 . . . . 5 ((𝐴 ∈ Ring ∧ (𝑇𝑢) ∈ 𝐿 ∧ (𝑇𝑤) ∈ 𝐿) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
2513, 16, 20, 24syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)))
26 simpll 764 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑁 ∈ Fin)
27 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑅 ∈ Ring)
28 simprl 768 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑢𝐵)
291, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 21955 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3026, 27, 28, 29syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3130ad2antrr 723 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑇𝑢) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))
3231fveq2d 6770 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝑇𝑢)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋))))))
3332fveq1d 6768 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
34 simplll 772 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3528adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
3635anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑢𝐵𝑛 ∈ ℕ0))
371, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 21953 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3834, 36, 37syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑢 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑢 decompPMat 𝑛))
3933, 38eqtrd 2778 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑢))‘𝑛) = (𝑢 decompPMat 𝑛))
40 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤𝐵)
411, 2, 3, 4, 5, 6, 7, 8, 9pm2mpfval 21955 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤𝐵) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4226, 27, 40, 41syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑇𝑤) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))
4342fveq2d 6770 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (coe1‘(𝑇𝑤)) = (coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋))))))
4443fveq1d 6768 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4544ad2antrr 723 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛))
4640adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
4746anim1i 615 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑤𝐵𝑛 ∈ ℕ0))
481, 2, 3, 4, 5, 6, 7, 8pm2mpf1lem 21953 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑤𝐵𝑛 ∈ ℕ0)) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
4934, 47, 48syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((𝑤 decompPMat 𝑘) (𝑘 𝑋)))))‘𝑛) = (𝑤 decompPMat 𝑛))
5045, 49eqtrd 2778 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑇𝑤))‘𝑛) = (𝑤 decompPMat 𝑛))
5139, 50eqeq12d 2754 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) ↔ (𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛)))
522, 3decpmatval 21924 . . . . . . . . . . . . . . . . 17 ((𝑢𝐵𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
5328, 52sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑢 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
542, 3decpmatval 21924 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5540, 54sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑤 decompPMat 𝑛) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
5653, 55eqeq12d 2754 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))))
57 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
58 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝐴) = (Base‘𝐴)
59 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ Fin)
60 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring)
61 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
62 simp2 1136 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
63 simp3 1137 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
643eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6564biimpi 215 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢𝐵𝑢 ∈ (Base‘𝐶))
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝐵𝑤𝐵) → 𝑢 ∈ (Base‘𝐶))
6766ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑢 ∈ (Base‘𝐶))
68673ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢 ∈ (Base‘𝐶))
6968, 3eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑢𝐵)
702, 61, 3, 62, 63, 69matecld 21585 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑢𝑗) ∈ (Base‘𝑃))
71 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑛 ∈ ℕ0)
72 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑖𝑢𝑗))
7372, 61, 1, 57coe1fvalcl 21393 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑢𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
7470, 71, 73syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) ∈ (Base‘𝑅))
757, 57, 58, 59, 60, 74matbas2d 21582 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴))
763eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7776biimpi 215 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ (Base‘𝐶))
7877ad2antll 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → 𝑤 ∈ (Base‘𝐶))
7978adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑤 ∈ (Base‘𝐶))
80793ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤 ∈ (Base‘𝐶))
8180, 3eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑤𝐵)
822, 61, 3, 62, 63, 81matecld 21585 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑤𝑗) ∈ (Base‘𝑃))
83 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑖𝑤𝑗))
8483, 61, 1, 57coe1fvalcl 21393 . . . . . . . . . . . . . . . . . 18 (((𝑖𝑤𝑗) ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
8582, 71, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) ∈ (Base‘𝑅))
867, 57, 58, 59, 60, 85matbas2d 21582 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴))
877, 58eqmat 21583 . . . . . . . . . . . . . . . 16 (((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) ∈ (Base‘𝐴) ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8875, 86, 87syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
8956, 88bitrd 278 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
9089adantlr 712 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
91 oveq1 7274 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦))
92 oveq1 7274 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦))
9391, 92eqeq12d 2754 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)))
94 oveq2 7275 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏))
95 oveq2 7275 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
9694, 95eqeq12d 2754 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) ↔ (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏)))
9793, 96rspc2va 3570 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏))
98 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛)))
99 oveq12 7276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑢𝑗) = (𝑎𝑢𝑏))
10099fveq2d 6770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑢𝑗)) = (coe1‘(𝑎𝑢𝑏)))
101100fveq1d 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
102101adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑢𝑗))‘𝑛) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
103 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑎𝑁)
104 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → 𝑏𝑁)
105 fvexd 6781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) ∈ V)
10698, 102, 103, 104, 105ovmpod 7415 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑢𝑏))‘𝑛))
107 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛)))
108 oveq12 7276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖𝑤𝑗) = (𝑎𝑤𝑏))
109108fveq2d 6770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 = 𝑎𝑗 = 𝑏) → (coe1‘(𝑖𝑤𝑗)) = (coe1‘(𝑎𝑤𝑏)))
110109fveq1d 6768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑎𝑗 = 𝑏) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
111110adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → ((coe1‘(𝑖𝑤𝑗))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
112 fvexd 6781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝑎𝑤𝑏))‘𝑛) ∈ V)
113107, 111, 103, 104, 112ovmpod 7415 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
114106, 113eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) ↔ ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
115114biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎𝑁𝑏𝑁) ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵))) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
116115exp31 420 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
117116com14 96 . . . . . . . . . . . . . . . . . . 19 ((𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑏) = (𝑎(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑏) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
11897, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑁𝑏𝑁) ∧ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
119118ex 413 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → ((𝑎𝑁𝑏𝑁) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
120119com25 99 . . . . . . . . . . . . . . . 16 ((𝑎𝑁𝑏𝑁) → ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))))
121120pm2.43i 52 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))))
122121impcom 408 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑛 ∈ ℕ0 → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))))
123122imp 407 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑢𝑗))‘𝑛))𝑦) = (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑤𝑗))‘𝑛))𝑦) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12490, 123sylbid 239 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑢 decompPMat 𝑛) = (𝑤 decompPMat 𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
12551, 124sylbid 239 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
126125ralimdva 3103 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ (𝑎𝑁𝑏𝑁)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
127126impancom 452 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ((𝑎𝑁𝑏𝑁) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
128127imp 407 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛))
12927ad2antrr 723 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑅 ∈ Ring)
130 simprl 768 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
131 simprr 770 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
13266ad2antlr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 ∈ (Base‘𝐶))
133132adantr 481 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢 ∈ (Base‘𝐶))
134133, 3eleqtrrdi 2850 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑢𝐵)
1352, 61, 3, 130, 131, 134matecld 21585 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) ∈ (Base‘𝑃))
13678ad2antrr 723 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤 ∈ (Base‘𝐶))
137136, 3eleqtrrdi 2850 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → 𝑤𝐵)
1382, 61, 3, 130, 131, 137matecld 21585 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑤𝑏) ∈ (Base‘𝑃))
139 eqid 2738 . . . . . . . . . . 11 (coe1‘(𝑎𝑢𝑏)) = (coe1‘(𝑎𝑢𝑏))
140 eqid 2738 . . . . . . . . . . 11 (coe1‘(𝑎𝑤𝑏)) = (coe1‘(𝑎𝑤𝑏))
1411, 61, 139, 140ply1coe1eq 21479 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛) ↔ (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
142141bicomd 222 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝑢𝑏) ∈ (Base‘𝑃) ∧ (𝑎𝑤𝑏) ∈ (Base‘𝑃)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
143129, 135, 138, 142syl3anc 1370 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → ((𝑎𝑢𝑏) = (𝑎𝑤𝑏) ↔ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑎𝑢𝑏))‘𝑛) = ((coe1‘(𝑎𝑤𝑏))‘𝑛)))
144128, 143mpbird 256 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
145144ralrimivva 3115 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏))
1462, 3eqmat 21583 . . . . . . 7 ((𝑢𝐵𝑤𝐵) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
147146ad2antlr 724 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → (𝑢 = 𝑤 ↔ ∀𝑎𝑁𝑏𝑁 (𝑎𝑢𝑏) = (𝑎𝑤𝑏)))
148145, 147mpbird 256 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) ∧ ∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛)) → 𝑢 = 𝑤)
149148ex 413 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → (∀𝑛 ∈ ℕ0 ((coe1‘(𝑇𝑢))‘𝑛) = ((coe1‘(𝑇𝑤))‘𝑛) → 𝑢 = 𝑤))
15025, 149sylbid 239 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑢𝐵𝑤𝐵)) → ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
151150ralrimivva 3115 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤))
152 dff13 7120 . 2 (𝑇:𝐵1-1𝐿 ↔ (𝑇:𝐵𝐿 ∧ ∀𝑢𝐵𝑤𝐵 ((𝑇𝑢) = (𝑇𝑤) → 𝑢 = 𝑤)))
15311, 151, 152sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3429  cmpt 5156  wf 6422  1-1wf1 6423  cfv 6426  (class class class)co 7267  cmpo 7269  Fincfn 8720  0cn0 12243  Basecbs 16922   ·𝑠 cvsca 16976   Σg cgsu 17161  .gcmg 18710  mulGrpcmgp 19730  Ringcrg 19793  var1cv1 21357  Poly1cpl1 21358  coe1cco1 21359   Mat cmat 21564   decompPMat cdecpmat 21921   pMatToMatPoly cpm2mp 21951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-ofr 7524  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-hom 16996  df-cco 16997  df-0g 17162  df-gsum 17163  df-prds 17168  df-pws 17170  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-mulg 18711  df-subg 18762  df-ghm 18842  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-srg 19752  df-ring 19795  df-subrg 20032  df-lmod 20135  df-lss 20204  df-sra 20444  df-rgmod 20445  df-dsmm 20949  df-frlm 20964  df-psr 21122  df-mvr 21123  df-mpl 21124  df-opsr 21126  df-psr1 21361  df-vr1 21362  df-ply1 21363  df-coe1 21364  df-mamu 21543  df-mat 21565  df-decpmat 21922  df-pm2mp 21952
This theorem is referenced by:  pm2mpf1o  21974
  Copyright terms: Public domain W3C validator