Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglemB Structured version   Visualization version   GIF version

Theorem nn0sumshdiglemB 44187
Description: Lemma for nn0sumshdig 44190 (induction step, odd multiplier). (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglemB (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Distinct variable group:   𝑘,𝑎,𝑥,𝑦

Proof of Theorem nn0sumshdiglemB
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12179 . . 3 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
2 1t1e1 11652 . . . . . . . . 9 (1 · 1) = 1
32eqcomi 2804 . . . . . . . 8 1 = (1 · 1)
4 simpl 483 . . . . . . . 8 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → 𝑎 = 1)
5 oveq2 7029 . . . . . . . . . . . 12 ((𝑦 + 1) = (#b𝑎) → (0..^(𝑦 + 1)) = (0..^(#b𝑎)))
65eqcoms 2803 . . . . . . . . . . 11 ((#b𝑎) = (𝑦 + 1) → (0..^(𝑦 + 1)) = (0..^(#b𝑎)))
7 fveq2 6543 . . . . . . . . . . . . . 14 (𝑎 = 1 → (#b𝑎) = (#b‘1))
8 blen1 44151 . . . . . . . . . . . . . 14 (#b‘1) = 1
97, 8syl6eq 2847 . . . . . . . . . . . . 13 (𝑎 = 1 → (#b𝑎) = 1)
109oveq2d 7037 . . . . . . . . . . . 12 (𝑎 = 1 → (0..^(#b𝑎)) = (0..^1))
11 fzo01 12974 . . . . . . . . . . . 12 (0..^1) = {0}
1210, 11syl6eq 2847 . . . . . . . . . . 11 (𝑎 = 1 → (0..^(#b𝑎)) = {0})
136, 12sylan9eqr 2853 . . . . . . . . . 10 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → (0..^(𝑦 + 1)) = {0})
1413sumeq1d 14896 . . . . . . . . 9 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
15 oveq2 7029 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)1))
1615oveq1d 7036 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)1) · (2↑𝑘)))
1716sumeq2sdv 14899 . . . . . . . . . . 11 (𝑎 = 1 → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)1) · (2↑𝑘)))
18 c0ex 10486 . . . . . . . . . . . 12 0 ∈ V
19 ax-1cn 10446 . . . . . . . . . . . . 13 1 ∈ ℂ
2019, 19mulcli 10499 . . . . . . . . . . . 12 (1 · 1) ∈ ℂ
21 oveq1 7028 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (𝑘(digit‘2)1) = (0(digit‘2)1))
22 1ex 10488 . . . . . . . . . . . . . . . . 17 1 ∈ V
2322prid2 4610 . . . . . . . . . . . . . . . 16 1 ∈ {0, 1}
24 0dig2pr01 44177 . . . . . . . . . . . . . . . 16 (1 ∈ {0, 1} → (0(digit‘2)1) = 1)
2523, 24ax-mp 5 . . . . . . . . . . . . . . 15 (0(digit‘2)1) = 1
2621, 25syl6eq 2847 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑘(digit‘2)1) = 1)
27 oveq2 7029 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2↑𝑘) = (2↑0))
28 2cn 11565 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
29 exp0 13288 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ → (2↑0) = 1)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (2↑0) = 1
3127, 30syl6eq 2847 . . . . . . . . . . . . . 14 (𝑘 = 0 → (2↑𝑘) = 1)
3226, 31oveq12d 7039 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑘(digit‘2)1) · (2↑𝑘)) = (1 · 1))
3332sumsn 14939 . . . . . . . . . . . 12 ((0 ∈ V ∧ (1 · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)1) · (2↑𝑘)) = (1 · 1))
3418, 20, 33mp2an 688 . . . . . . . . . . 11 Σ𝑘 ∈ {0} ((𝑘(digit‘2)1) · (2↑𝑘)) = (1 · 1)
3517, 34syl6eq 2847 . . . . . . . . . 10 (𝑎 = 1 → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (1 · 1))
3635adantr 481 . . . . . . . . 9 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (1 · 1))
3714, 36eqtrd 2831 . . . . . . . 8 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (1 · 1))
383, 4, 373eqtr4a 2857 . . . . . . 7 ((𝑎 = 1 ∧ (#b𝑎) = (𝑦 + 1)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
3938ex 413 . . . . . 6 (𝑎 = 1 → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
4039a1d 25 . . . . 5 (𝑎 = 1 → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
41402a1d 26 . . . 4 (𝑎 = 1 → (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
42 eluzge2nn0 12141 . . . . . . . . 9 (𝑎 ∈ (ℤ‘2) → 𝑎 ∈ ℕ0)
43 nn0ob 15573 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (((𝑎 + 1) / 2) ∈ ℕ0 ↔ ((𝑎 − 1) / 2) ∈ ℕ0))
4443bicomd 224 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (((𝑎 − 1) / 2) ∈ ℕ0 ↔ ((𝑎 + 1) / 2) ∈ ℕ0))
4542, 44syl 17 . . . . . . . 8 (𝑎 ∈ (ℤ‘2) → (((𝑎 − 1) / 2) ∈ ℕ0 ↔ ((𝑎 + 1) / 2) ∈ ℕ0))
46 blennngt2o2 44159 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 + 1) / 2) ∈ ℕ0) → (#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1))
4746ex 413 . . . . . . . 8 (𝑎 ∈ (ℤ‘2) → (((𝑎 + 1) / 2) ∈ ℕ0 → (#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1)))
4845, 47sylbid 241 . . . . . . 7 (𝑎 ∈ (ℤ‘2) → (((𝑎 − 1) / 2) ∈ ℕ0 → (#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1)))
4948imp 407 . . . . . 6 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1))
50 fveqeq2 6552 . . . . . . . . . . . . 13 (𝑥 = ((𝑎 − 1) / 2) → ((#b𝑥) = 𝑦 ↔ (#b‘((𝑎 − 1) / 2)) = 𝑦))
51 id 22 . . . . . . . . . . . . . 14 (𝑥 = ((𝑎 − 1) / 2) → 𝑥 = ((𝑎 − 1) / 2))
52 oveq2 7029 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝑎 − 1) / 2) → (𝑘(digit‘2)𝑥) = (𝑘(digit‘2)((𝑎 − 1) / 2)))
5352oveq1d 7036 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑎 − 1) / 2) → ((𝑘(digit‘2)𝑥) · (2↑𝑘)) = ((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)))
5453sumeq2sdv 14899 . . . . . . . . . . . . . 14 (𝑥 = ((𝑎 − 1) / 2) → Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)))
5551, 54eqeq12d 2810 . . . . . . . . . . . . 13 (𝑥 = ((𝑎 − 1) / 2) → (𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)) ↔ ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))))
5650, 55imbi12d 346 . . . . . . . . . . . 12 (𝑥 = ((𝑎 − 1) / 2) → (((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) ↔ ((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)))))
5756rspcva 3557 . . . . . . . . . . 11 ((((𝑎 − 1) / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → ((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))))
58 eqeq1 2799 . . . . . . . . . . . . . . . 16 ((#b𝑎) = (𝑦 + 1) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) ↔ (𝑦 + 1) = ((#b‘((𝑎 − 1) / 2)) + 1)))
59 nncn 11499 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
6059ad2antll 725 . . . . . . . . . . . . . . . . . . . 20 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℂ)
61 blennn0elnn 44144 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 − 1) / 2) ∈ ℕ0 → (#b‘((𝑎 − 1) / 2)) ∈ ℕ)
6261nncnd 11507 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 − 1) / 2) ∈ ℕ0 → (#b‘((𝑎 − 1) / 2)) ∈ ℂ)
6362adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (#b‘((𝑎 − 1) / 2)) ∈ ℂ)
6463ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (#b‘((𝑎 − 1) / 2)) ∈ ℂ)
65 1cnd 10487 . . . . . . . . . . . . . . . . . . . 20 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 1 ∈ ℂ)
6660, 64, 65addcan2d 10696 . . . . . . . . . . . . . . . . . . 19 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → ((𝑦 + 1) = ((#b‘((𝑎 − 1) / 2)) + 1) ↔ 𝑦 = (#b‘((𝑎 − 1) / 2))))
67 eqcom 2802 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (#b‘((𝑎 − 1) / 2)) ↔ (#b‘((𝑎 − 1) / 2)) = 𝑦)
68 nnz 11858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6968ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℤ)
70 fzval3 12961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℤ → (0...𝑦) = (0..^(𝑦 + 1)))
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (0...𝑦) = (0..^(𝑦 + 1)))
7271eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (0..^(𝑦 + 1)) = (0...𝑦))
7372sumeq1d 14896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
74 nnnn0 11757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
75 elnn0uz 12137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
7674, 75sylib 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘0))
7776ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (ℤ‘0))
78 2nn 11563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ ℕ
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...𝑦)) → 2 ∈ ℕ)
80 elfzelz 12763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℤ)
8180adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...𝑦)) → 𝑘 ∈ ℤ)
82 nn0rp0 12698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
8342, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ (ℤ‘2) → 𝑎 ∈ (0[,)+∞))
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → 𝑎 ∈ (0[,)+∞))
8584adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...𝑦)) → 𝑎 ∈ (0[,)+∞))
86 digvalnn0 44166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((2 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
8779, 81, 85, 86syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
8887ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (𝑘 ∈ (0...𝑦) → (𝑘(digit‘2)𝑎) ∈ ℕ0))
8988ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (𝑘 ∈ (0...𝑦) → (𝑘(digit‘2)𝑎) ∈ ℕ0))
9089imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
9190nn0cnd 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ (0...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
92 2nn0 11767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 ∈ ℕ0
9392a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ (0...𝑦) → 2 ∈ ℕ0)
94 elfznn0 12855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ (0...𝑦) → 𝑘 ∈ ℕ0)
9593, 94nn0expcld 13462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℕ0)
9695nn0cnd 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑦) → (2↑𝑘) ∈ ℂ)
9796adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ (0...𝑦)) → (2↑𝑘) ∈ ℂ)
9891, 97mulcld 10512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ (0...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
99 oveq1 7028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
10099, 27oveq12d 7039 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · (2↑0)))
10130oveq2i 7032 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0(digit‘2)𝑎) · (2↑0)) = ((0(digit‘2)𝑎) · 1)
102100, 101syl6eq 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
10377, 98, 102fsum1p 14946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ (0...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
10442adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → 𝑎 ∈ ℕ0)
10542, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ∈ (ℤ‘2) → (((𝑎 + 1) / 2) ∈ ℕ0 ↔ ((𝑎 − 1) / 2) ∈ ℕ0))
106105biimparc 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → ((𝑎 + 1) / 2) ∈ ℕ0)
107 0dig2nn0o 44180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ ℕ0 ∧ ((𝑎 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑎) = 1)
108104, 106, 107syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (0(digit‘2)𝑎) = 1)
109108ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (0(digit‘2)𝑎) = 1)
110109oveq1d 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → ((0(digit‘2)𝑎) · 1) = (1 · 1))
111110, 2syl6eq 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → ((0(digit‘2)𝑎) · 1) = 1)
112 1z 11866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℤ
113112a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 1 ∈ ℤ)
114 0p1e1 11612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 + 1) = 1
115114, 112eqeltri 2879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0 + 1) ∈ ℤ
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (0 + 1) ∈ ℤ)
11778a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ (ℤ‘2) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 2 ∈ ℕ)
118 elfzelz 12763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℤ)
119118adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ (ℤ‘2) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑘 ∈ ℤ)
12042adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 ∈ (ℤ‘2) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ ℕ0)
121120, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ (ℤ‘2) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → 𝑎 ∈ (0[,)+∞))
122117, 119, 121, 86syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 ∈ (ℤ‘2) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
123122ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 ∈ (ℤ‘2) → (𝑘 ∈ ((0 + 1)...𝑦) → (𝑘(digit‘2)𝑎) ∈ ℕ0))
124123adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (𝑘 ∈ ((0 + 1)...𝑦) → (𝑘(digit‘2)𝑎) ∈ ℕ0))
125124ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (𝑘 ∈ ((0 + 1)...𝑦) → (𝑘(digit‘2)𝑎) ∈ ℕ0))
126125imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℕ0)
127126nn0cnd 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (𝑘(digit‘2)𝑎) ∈ ℂ)
128 2cnd 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ((0 + 1)...𝑦) → 2 ∈ ℂ)
129 elfznn 12791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ)
130129nnnn0d 11808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ (1...𝑦) → 𝑘 ∈ ℕ0)
131114oveq1i 7031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 + 1)...𝑦) = (1...𝑦)
132130, 131eleq2s 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ((0 + 1)...𝑦) → 𝑘 ∈ ℕ0)
133128, 132expcld 13365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ((0 + 1)...𝑦) → (2↑𝑘) ∈ ℂ)
134133adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → (2↑𝑘) ∈ ℂ)
135127, 134mulcld 10512 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑘 ∈ ((0 + 1)...𝑦)) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) ∈ ℂ)
136 oveq1 7028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = (𝑖 + 1) → (𝑘(digit‘2)𝑎) = ((𝑖 + 1)(digit‘2)𝑎))
137 oveq2 7029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = (𝑖 + 1) → (2↑𝑘) = (2↑(𝑖 + 1)))
138136, 137oveq12d 7039 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = (𝑖 + 1) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
139113, 116, 69, 135, 138fsumshftm 14974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))))
140111, 139oveq12d 7039 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (((0(digit‘2)𝑎) · 1) + Σ𝑘 ∈ ((0 + 1)...𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) = (1 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
14173, 103, 1403eqtrd 2835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (1 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
142141adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = (1 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))))
14378a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℕ)
144 elfzoelz 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℤ)
145144adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ ℤ)
146 nn0rp0 12698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑎 − 1) / 2) ∈ ℕ0 → ((𝑎 − 1) / 2) ∈ (0[,)+∞))
147146adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → ((𝑎 − 1) / 2) ∈ (0[,)+∞))
148147adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑎 − 1) / 2) ∈ (0[,)+∞))
149 digvalnn0 44166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((2 ∈ ℕ ∧ 𝑖 ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ (0[,)+∞)) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℕ0)
150143, 145, 148, 149syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℕ0)
151150nn0cnd 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℂ)
152151ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (𝑖 ∈ (0..^𝑦) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℂ))
153152ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (𝑖 ∈ (0..^𝑦) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℂ))
154153imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖(digit‘2)((𝑎 − 1) / 2)) ∈ ℂ)
15592a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ (0..^𝑦) → 2 ∈ ℕ0)
156 elfzonn0 12937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ ℕ0)
157155, 156nn0expcld 13462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℕ0)
158157nn0cnd 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑦) → (2↑𝑖) ∈ ℂ)
159158adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
160 2cnd 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (0..^𝑦)) → 2 ∈ ℂ)
161154, 159, 160mulassd 10515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2) = ((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)))
162161eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)) = (((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
163162sumeq2dv 14898 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
164163adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
165 0cn 10484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ ℂ
166 pncan1 10917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (0 ∈ ℂ → ((0 + 1) − 1) = 0)
167165, 166ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 + 1) − 1) = 0
168167a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℕ → ((0 + 1) − 1) = 0)
169168oveq1d 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0...(𝑦 − 1)))
170 fzoval 12894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ℤ → (0..^𝑦) = (0...(𝑦 − 1)))
17168, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ℕ → (0..^𝑦) = (0...(𝑦 − 1)))
172169, 171eqtr4d 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℕ → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
173172ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (((0 + 1) − 1)...(𝑦 − 1)) = (0..^𝑦))
174 simprlr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑎 ∈ (ℤ‘2))
175 elfznn0 12855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ (0...(𝑦 − 1)) → 𝑖 ∈ ℕ0)
176167oveq1i 7031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((0 + 1) − 1)...(𝑦 − 1)) = (0...(𝑦 − 1))
177175, 176eleq2s 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1)) → 𝑖 ∈ ℕ0)
178 dignn0flhalf 44185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎 ∈ (ℤ‘2) ∧ 𝑖 ∈ ℕ0) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(⌊‘(𝑎 / 2))))
179174, 177, 178syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)(⌊‘(𝑎 / 2))))
180 eluzelz 12108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎 ∈ (ℤ‘2) → 𝑎 ∈ ℤ)
181180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → 𝑎 ∈ ℤ)
182 nn0z 11859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑎 − 1) / 2) ∈ ℕ0 → ((𝑎 − 1) / 2) ∈ ℤ)
183 zob 15546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℤ → (((𝑎 + 1) / 2) ∈ ℤ ↔ ((𝑎 − 1) / 2) ∈ ℤ))
184180, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎 ∈ (ℤ‘2) → (((𝑎 + 1) / 2) ∈ ℤ ↔ ((𝑎 − 1) / 2) ∈ ℤ))
185182, 184syl5ibr 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎 ∈ (ℤ‘2) → (((𝑎 − 1) / 2) ∈ ℕ0 → ((𝑎 + 1) / 2) ∈ ℤ))
186185imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((𝑎 + 1) / 2) ∈ ℤ)
187181, 186jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (𝑎 ∈ ℤ ∧ ((𝑎 + 1) / 2) ∈ ℤ))
188187ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (𝑎 ∈ ℤ ∧ ((𝑎 + 1) / 2) ∈ ℤ))
189188ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (𝑎 ∈ ℤ ∧ ((𝑎 + 1) / 2) ∈ ℤ))
190189adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → (𝑎 ∈ ℤ ∧ ((𝑎 + 1) / 2) ∈ ℤ))
191 zofldiv2 44098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑎 ∈ ℤ ∧ ((𝑎 + 1) / 2) ∈ ℤ) → (⌊‘(𝑎 / 2)) = ((𝑎 − 1) / 2))
192190, 191syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → (⌊‘(𝑎 / 2)) = ((𝑎 − 1) / 2))
193192oveq2d 7037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → (𝑖(digit‘2)(⌊‘(𝑎 / 2))) = (𝑖(digit‘2)((𝑎 − 1) / 2)))
194179, 193eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → ((𝑖 + 1)(digit‘2)𝑎) = (𝑖(digit‘2)((𝑎 − 1) / 2)))
195 2cnd 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1)) → 2 ∈ ℂ)
196195, 177expp1d 13366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1)) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
197196adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → (2↑(𝑖 + 1)) = ((2↑𝑖) · 2))
198194, 197oveq12d 7039 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) ∧ 𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))) → (((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = ((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)))
199173, 198sumeq12dv 14901 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)))
200199adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · ((2↑𝑖) · 2)))
201 oveq1 7028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝑖 → (𝑘(digit‘2)((𝑎 − 1) / 2)) = (𝑖(digit‘2)((𝑎 − 1) / 2)))
202 oveq2 7029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝑖 → (2↑𝑘) = (2↑𝑖))
203201, 202oveq12d 7039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑖 → ((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) = ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)))
204203cbvsumv 14891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖))
205204eqeq2i 2807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ↔ ((𝑎 − 1) / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)))
206205biimpi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) → ((𝑎 − 1) / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)))
207206adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → ((𝑎 − 1) / 2) = Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)))
208207oveq1d 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (((𝑎 − 1) / 2) · 2) = (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
209 fzofi 13197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0..^𝑦) ∈ Fin
210209a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (0..^𝑦) ∈ Fin)
211 2cnd 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → 2 ∈ ℂ)
212158adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → (2↑𝑖) ∈ ℂ)
213151, 212mulcld 10512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) ∈ ℂ)
214213ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (𝑖 ∈ (0..^𝑦) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) ∈ ℂ))
215214adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → (𝑖 ∈ (0..^𝑦) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) ∈ ℂ))
216215ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (𝑖 ∈ (0..^𝑦) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) ∈ ℂ))
217216imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) ∈ ℂ)
218210, 211, 217fsummulc1 14978 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (Σ𝑖 ∈ (0..^𝑦)((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
219208, 218eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (((𝑎 − 1) / 2) · 2) = Σ𝑖 ∈ (0..^𝑦)(((𝑖(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑖)) · 2))
220164, 200, 2193eqtr4d 2841 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1))) = (((𝑎 − 1) / 2) · 2))
221220oveq2d 7037 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (1 + Σ𝑖 ∈ (((0 + 1) − 1)...(𝑦 − 1))(((𝑖 + 1)(digit‘2)𝑎) · (2↑(𝑖 + 1)))) = (1 + (((𝑎 − 1) / 2) · 2)))
222 eluzelcn 12110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ∈ (ℤ‘2) → 𝑎 ∈ ℂ)
223 peano2cnm 10805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ∈ ℂ → (𝑎 − 1) ∈ ℂ)
224222, 223syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ (ℤ‘2) → (𝑎 − 1) ∈ ℂ)
225 2cnd 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ (ℤ‘2) → 2 ∈ ℂ)
226 2ne0 11594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 ≠ 0
227226a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 ∈ (ℤ‘2) → 2 ≠ 0)
228224, 225, 2273jca 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (ℤ‘2) → ((𝑎 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
229228adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → ((𝑎 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
230 divcan1 11160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((𝑎 − 1) / 2) · 2) = (𝑎 − 1))
231229, 230syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (((𝑎 − 1) / 2) · 2) = (𝑎 − 1))
232231oveq2d 7037 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (1 + (((𝑎 − 1) / 2) · 2)) = (1 + (𝑎 − 1)))
233 1cnd 10487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (ℤ‘2) → 1 ∈ ℂ)
234233, 222jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ (ℤ‘2) → (1 ∈ ℂ ∧ 𝑎 ∈ ℂ))
235234adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (1 ∈ ℂ ∧ 𝑎 ∈ ℂ))
236 pncan3 10746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎)
237235, 236syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (1 + (𝑎 − 1)) = 𝑎)
238232, 237eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) → (1 + (((𝑎 − 1) / 2) · 2)) = 𝑎)
239238adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → (1 + (((𝑎 − 1) / 2) · 2)) = 𝑎)
240239ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → (1 + (((𝑎 − 1) / 2) · 2)) = 𝑎)
241142, 221, 2403eqtrrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) ∧ ((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
242241ex 413 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘)) → (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
243242imim2i 16 . . . . . . . . . . . . . . . . . . . . 21 (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → ((#b‘((𝑎 − 1) / 2)) = 𝑦 → (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
244243com13 88 . . . . . . . . . . . . . . . . . . . 20 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → ((#b‘((𝑎 − 1) / 2)) = 𝑦 → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
24567, 244syl5bi 243 . . . . . . . . . . . . . . . . . . 19 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → (𝑦 = (#b‘((𝑎 − 1) / 2)) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
24666, 245sylbid 241 . . . . . . . . . . . . . . . . . 18 (((#b𝑎) = (𝑦 + 1) ∧ ((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ)) → ((𝑦 + 1) = ((#b‘((𝑎 − 1) / 2)) + 1) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
247246ex 413 . . . . . . . . . . . . . . . . 17 ((#b𝑎) = (𝑦 + 1) → (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → ((𝑦 + 1) = ((#b‘((𝑎 − 1) / 2)) + 1) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
248247com23 86 . . . . . . . . . . . . . . . 16 ((#b𝑎) = (𝑦 + 1) → ((𝑦 + 1) = ((#b‘((𝑎 − 1) / 2)) + 1) → (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
24958, 248sylbid 241 . . . . . . . . . . . . . . 15 ((#b𝑎) = (𝑦 + 1) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
250249com23 86 . . . . . . . . . . . . . 14 ((#b𝑎) = (𝑦 + 1) → (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
251250com14 96 . . . . . . . . . . . . 13 (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → (((((𝑎 − 1) / 2) ∈ ℕ0𝑎 ∈ (ℤ‘2)) ∧ 𝑦 ∈ ℕ) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
252251exp4c 433 . . . . . . . . . . . 12 (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑎 ∈ (ℤ‘2) → (𝑦 ∈ ℕ → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
253252com35 98 . . . . . . . . . . 11 (((#b‘((𝑎 − 1) / 2)) = 𝑦 → ((𝑎 − 1) / 2) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)((𝑎 − 1) / 2)) · (2↑𝑘))) → (((𝑎 − 1) / 2) ∈ ℕ0 → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (𝑎 ∈ (ℤ‘2) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
25457, 253syl 17 . . . . . . . . . 10 ((((𝑎 − 1) / 2) ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘)))) → (((𝑎 − 1) / 2) ∈ ℕ0 → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (𝑎 ∈ (ℤ‘2) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
255254ex 413 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → (((𝑎 − 1) / 2) ∈ ℕ0 → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (𝑎 ∈ (ℤ‘2) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))))
256255pm2.43a 54 . . . . . . . 8 (((𝑎 − 1) / 2) ∈ ℕ0 → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (𝑎 ∈ (ℤ‘2) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
257256com25 99 . . . . . . 7 (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑎 ∈ (ℤ‘2) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))))
258257impcom 408 . . . . . 6 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → ((#b𝑎) = ((#b‘((𝑎 − 1) / 2)) + 1) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
25949, 258mpd 15 . . . . 5 ((𝑎 ∈ (ℤ‘2) ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))))
260259ex 413 . . . 4 (𝑎 ∈ (ℤ‘2) → (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
26141, 260jaoi 852 . . 3 ((𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)) → (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
2621, 261sylbi 218 . 2 (𝑎 ∈ ℕ → (((𝑎 − 1) / 2) ∈ ℕ0 → (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))))
263262imp31 418 1 (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b𝑥) = 𝑦𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  Vcvv 3437  {csn 4476  {cpr 4478  cfv 6230  (class class class)co 7021  Fincfn 8362  cc 10386  0cc0 10388  1c1 10389   + caddc 10391   · cmul 10393  +∞cpnf 10523  cmin 10722   / cdiv 11150  cn 11491  2c2 11545  0cn0 11750  cz 11834  cuz 12098  [,)cico 12595  ...cfz 12747  ..^cfzo 12888  cfl 13015  cexp 13284  Σcsu 14881  #bcblen 44136  digitcdig 44162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-map 8263  df-pm 8264  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-fi 8726  df-sup 8757  df-inf 8758  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-q 12203  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ioo 12597  df-ioc 12598  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-fl 13017  df-mod 13093  df-seq 13225  df-exp 13285  df-fac 13489  df-bc 13518  df-hash 13546  df-shft 14265  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-limsup 14667  df-clim 14684  df-rlim 14685  df-sum 14882  df-ef 15259  df-sin 15261  df-cos 15262  df-pi 15264  df-dvds 15446  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-rest 16530  df-topn 16531  df-0g 16549  df-gsum 16550  df-topgen 16551  df-pt 16552  df-prds 16555  df-xrs 16609  df-qtop 16614  df-imas 16615  df-xps 16617  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-submnd 17780  df-mulg 17987  df-cntz 18193  df-cmn 18640  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227  df-mopn 20228  df-fbas 20229  df-fg 20230  df-cnfld 20233  df-top 21191  df-topon 21208  df-topsp 21230  df-bases 21243  df-cld 21316  df-ntr 21317  df-cls 21318  df-nei 21395  df-lp 21433  df-perf 21434  df-cn 21524  df-cnp 21525  df-haus 21612  df-tx 21859  df-hmeo 22052  df-fil 22143  df-fm 22235  df-flim 22236  df-flf 22237  df-xms 22618  df-ms 22619  df-tms 22620  df-cncf 23174  df-limc 24152  df-dv 24153  df-log 24826  df-cxp 24827  df-logb 25029  df-blen 44137  df-dig 44163
This theorem is referenced by:  nn0sumshdiglem1  44188
  Copyright terms: Public domain W3C validator