MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   GIF version

Theorem neindisj2 22274
Description: A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem neindisj2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3 𝑋 = 𝐽
21elcls 22224 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
31isneip 22256 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛))))
4 r19.29r 3185 . . . . . . . . . . 11 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5 pm3.35 800 . . . . . . . . . . . . . . . 16 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑆) ≠ ∅)
6 ssrin 4167 . . . . . . . . . . . . . . . . . 18 (𝑥𝑛 → (𝑥𝑆) ⊆ (𝑛𝑆))
7 sseq2 3947 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) ↔ (𝑥𝑆) ⊆ ∅))
8 ss0 4332 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆) ⊆ ∅ → (𝑥𝑆) = ∅)
97, 8syl6bi 252 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) → (𝑥𝑆) = ∅))
106, 9syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑥𝑛 → ((𝑛𝑆) = ∅ → (𝑥𝑆) = ∅))
1110necon3d 2964 . . . . . . . . . . . . . . . 16 (𝑥𝑛 → ((𝑥𝑆) ≠ ∅ → (𝑛𝑆) ≠ ∅))
125, 11syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅))
1312ex 413 . . . . . . . . . . . . . 14 (𝑃𝑥 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅)))
1413com23 86 . . . . . . . . . . . . 13 (𝑃𝑥 → (𝑥𝑛 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
1514imp31 418 . . . . . . . . . . . 12 (((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1615rexlimivw 3211 . . . . . . . . . . 11 (∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
174, 16syl 17 . . . . . . . . . 10 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1817ex 413 . . . . . . . . 9 (∃𝑥𝐽 (𝑃𝑥𝑥𝑛) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
1918adantl 482 . . . . . . . 8 ((𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛)) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
203, 19syl6bi 252 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
21203adant2 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
2221com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅)))
2322imp 407 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅))
2423ralrimiv 3102 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅)
25 opnneip 22270 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
26 ineq1 4139 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑛𝑆) = (𝑥𝑆))
2726neeq1d 3003 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → ((𝑛𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2827rspccva 3560 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥𝑆) ≠ ∅)
29 idd 24 . . . . . . . . . . . . . . 15 ((𝑃𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) ∧ 𝑆𝑋) → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))
30293exp 1118 . . . . . . . . . . . . . 14 (𝑃𝑋 → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))))
3130com14 96 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3228, 31syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3332ex 413 . . . . . . . . . . 11 (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3433com3l 89 . . . . . . . . . 10 (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3525, 34mpcom 38 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
36353expia 1120 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3736com25 99 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))))
3837ex 413 . . . . . 6 (𝐽 ∈ Top → (𝑥𝐽 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
3938com25 99 . . . . 5 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
40393imp1 1346 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
4140ralrimiv 3102 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
4224, 41impbida 798 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
432, 42bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  {csn 4561   cuni 4839  cfv 6433  Topctop 22042  clsccl 22169  neicnei 22248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249
This theorem is referenced by:  islp2  22296  trnei  23043  flimclsi  23129
  Copyright terms: Public domain W3C validator