MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   GIF version

Theorem neindisj2 23059
Description: A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem neindisj2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3 𝑋 = 𝐽
21elcls 23009 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
31isneip 23041 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛))))
4 r19.29r 3103 . . . . . . . . . . 11 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5 pm3.35 802 . . . . . . . . . . . . . . . 16 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑆) ≠ ∅)
6 ssrin 4217 . . . . . . . . . . . . . . . . . 18 (𝑥𝑛 → (𝑥𝑆) ⊆ (𝑛𝑆))
7 sseq2 3985 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) ↔ (𝑥𝑆) ⊆ ∅))
8 ss0 4377 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆) ⊆ ∅ → (𝑥𝑆) = ∅)
97, 8biimtrdi 253 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) → (𝑥𝑆) = ∅))
106, 9syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑥𝑛 → ((𝑛𝑆) = ∅ → (𝑥𝑆) = ∅))
1110necon3d 2953 . . . . . . . . . . . . . . . 16 (𝑥𝑛 → ((𝑥𝑆) ≠ ∅ → (𝑛𝑆) ≠ ∅))
125, 11syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅))
1312ex 412 . . . . . . . . . . . . . 14 (𝑃𝑥 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅)))
1413com23 86 . . . . . . . . . . . . 13 (𝑃𝑥 → (𝑥𝑛 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
1514imp31 417 . . . . . . . . . . . 12 (((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1615rexlimivw 3137 . . . . . . . . . . 11 (∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
174, 16syl 17 . . . . . . . . . 10 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1817ex 412 . . . . . . . . 9 (∃𝑥𝐽 (𝑃𝑥𝑥𝑛) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
1918adantl 481 . . . . . . . 8 ((𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛)) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
203, 19biimtrdi 253 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
21203adant2 1131 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
2221com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅)))
2322imp 406 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅))
2423ralrimiv 3131 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅)
25 opnneip 23055 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
26 ineq1 4188 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑛𝑆) = (𝑥𝑆))
2726neeq1d 2991 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → ((𝑛𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2827rspccva 3600 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥𝑆) ≠ ∅)
29 idd 24 . . . . . . . . . . . . . . 15 ((𝑃𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) ∧ 𝑆𝑋) → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))
30293exp 1119 . . . . . . . . . . . . . 14 (𝑃𝑋 → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))))
3130com14 96 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3228, 31syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3332ex 412 . . . . . . . . . . 11 (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3433com3l 89 . . . . . . . . . 10 (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3525, 34mpcom 38 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
36353expia 1121 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3736com25 99 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))))
3837ex 412 . . . . . 6 (𝐽 ∈ Top → (𝑥𝐽 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
3938com25 99 . . . . 5 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
40393imp1 1348 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
4140ralrimiv 3131 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
4224, 41impbida 800 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
432, 42bitrd 279 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  {csn 4601   cuni 4883  cfv 6530  Topctop 22829  clsccl 22954  neicnei 23033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034
This theorem is referenced by:  islp2  23081  trnei  23828  flimclsi  23914
  Copyright terms: Public domain W3C validator