MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   GIF version

Theorem neindisj2 22511
Description: A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem neindisj2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3 𝑋 = 𝐽
21elcls 22461 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
31isneip 22493 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛))))
4 r19.29r 3115 . . . . . . . . . . 11 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5 pm3.35 801 . . . . . . . . . . . . . . . 16 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑆) ≠ ∅)
6 ssrin 4198 . . . . . . . . . . . . . . . . . 18 (𝑥𝑛 → (𝑥𝑆) ⊆ (𝑛𝑆))
7 sseq2 3973 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) ↔ (𝑥𝑆) ⊆ ∅))
8 ss0 4363 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆) ⊆ ∅ → (𝑥𝑆) = ∅)
97, 8syl6bi 252 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) → (𝑥𝑆) = ∅))
106, 9syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑥𝑛 → ((𝑛𝑆) = ∅ → (𝑥𝑆) = ∅))
1110necon3d 2960 . . . . . . . . . . . . . . . 16 (𝑥𝑛 → ((𝑥𝑆) ≠ ∅ → (𝑛𝑆) ≠ ∅))
125, 11syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅))
1312ex 413 . . . . . . . . . . . . . 14 (𝑃𝑥 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅)))
1413com23 86 . . . . . . . . . . . . 13 (𝑃𝑥 → (𝑥𝑛 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
1514imp31 418 . . . . . . . . . . . 12 (((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1615rexlimivw 3144 . . . . . . . . . . 11 (∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
174, 16syl 17 . . . . . . . . . 10 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1817ex 413 . . . . . . . . 9 (∃𝑥𝐽 (𝑃𝑥𝑥𝑛) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
1918adantl 482 . . . . . . . 8 ((𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛)) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
203, 19syl6bi 252 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
21203adant2 1131 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
2221com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅)))
2322imp 407 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅))
2423ralrimiv 3138 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅)
25 opnneip 22507 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
26 ineq1 4170 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑛𝑆) = (𝑥𝑆))
2726neeq1d 2999 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → ((𝑛𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2827rspccva 3581 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥𝑆) ≠ ∅)
29 idd 24 . . . . . . . . . . . . . . 15 ((𝑃𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) ∧ 𝑆𝑋) → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))
30293exp 1119 . . . . . . . . . . . . . 14 (𝑃𝑋 → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))))
3130com14 96 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3228, 31syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3332ex 413 . . . . . . . . . . 11 (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3433com3l 89 . . . . . . . . . 10 (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3525, 34mpcom 38 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
36353expia 1121 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3736com25 99 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))))
3837ex 413 . . . . . 6 (𝐽 ∈ Top → (𝑥𝐽 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
3938com25 99 . . . . 5 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
40393imp1 1347 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
4140ralrimiv 3138 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
4224, 41impbida 799 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
432, 42bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  cin 3912  wss 3913  c0 4287  {csn 4591   cuni 4870  cfv 6501  Topctop 22279  clsccl 22406  neicnei 22485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-top 22280  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486
This theorem is referenced by:  islp2  22533  trnei  23280  flimclsi  23366
  Copyright terms: Public domain W3C validator