Step | Hyp | Ref
| Expression |
1 | | tpnei.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | elcls 22224 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
3 | 1 | isneip 22256 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛)))) |
4 | | r19.29r 3185 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → ∃𝑥 ∈ 𝐽 ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) ∧ (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
5 | | pm3.35 800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ 𝑥 ∧ (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑥 ∩ 𝑆) ≠ ∅) |
6 | | ssrin 4167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ⊆ 𝑛 → (𝑥 ∩ 𝑆) ⊆ (𝑛 ∩ 𝑆)) |
7 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∩ 𝑆) = ∅ → ((𝑥 ∩ 𝑆) ⊆ (𝑛 ∩ 𝑆) ↔ (𝑥 ∩ 𝑆) ⊆ ∅)) |
8 | | ss0 4332 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∩ 𝑆) ⊆ ∅ → (𝑥 ∩ 𝑆) = ∅) |
9 | 7, 8 | syl6bi 252 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∩ 𝑆) = ∅ → ((𝑥 ∩ 𝑆) ⊆ (𝑛 ∩ 𝑆) → (𝑥 ∩ 𝑆) = ∅)) |
10 | 6, 9 | syl5com 31 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ⊆ 𝑛 → ((𝑛 ∩ 𝑆) = ∅ → (𝑥 ∩ 𝑆) = ∅)) |
11 | 10 | necon3d 2964 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑛 → ((𝑥 ∩ 𝑆) ≠ ∅ → (𝑛 ∩ 𝑆) ≠ ∅)) |
12 | 5, 11 | syl5com 31 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ 𝑥 ∧ (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑥 ⊆ 𝑛 → (𝑛 ∩ 𝑆) ≠ ∅)) |
13 | 12 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝑥 → ((𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑥 ⊆ 𝑛 → (𝑛 ∩ 𝑆) ≠ ∅))) |
14 | 13 | com23 86 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑥 → (𝑥 ⊆ 𝑛 → ((𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∩ 𝑆) ≠ ∅))) |
15 | 14 | imp31 418 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) ∧ (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑛 ∩ 𝑆) ≠ ∅) |
16 | 15 | rexlimivw 3211 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐽 ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) ∧ (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑛 ∩ 𝑆) ≠ ∅) |
17 | 4, 16 | syl 17 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑛 ∩ 𝑆) ≠ ∅) |
18 | 17 | ex 413 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∩ 𝑆) ≠ ∅)) |
19 | 18 | adantl 482 |
. . . . . . . 8
⊢ ((𝑛 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑛)) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∩ 𝑆) ≠ ∅)) |
20 | 3, 19 | syl6bi 252 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∩ 𝑆) ≠ ∅))) |
21 | 20 | 3adant2 1130 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∩ 𝑆) ≠ ∅))) |
22 | 21 | com23 86 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛 ∩ 𝑆) ≠ ∅))) |
23 | 22 | imp 407 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛 ∩ 𝑆) ≠ ∅)) |
24 | 23 | ralrimiv 3102 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅) |
25 | | opnneip 22270 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
26 | | ineq1 4139 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (𝑛 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
27 | 26 | neeq1d 3003 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → ((𝑛 ∩ 𝑆) ≠ ∅ ↔ (𝑥 ∩ 𝑆) ≠ ∅)) |
28 | 27 | rspccva 3560 |
. . . . . . . . . . . . 13
⊢
((∀𝑛 ∈
((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥 ∩ 𝑆) ≠ ∅) |
29 | | idd 24 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ 𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∩ 𝑆) ≠ ∅ → (𝑥 ∩ 𝑆) ≠ ∅)) |
30 | 29 | 3exp 1118 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝑋 → ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (𝑆 ⊆ 𝑋 → ((𝑥 ∩ 𝑆) ≠ ∅ → (𝑥 ∩ 𝑆) ≠ ∅)))) |
31 | 30 | com14 96 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∩ 𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
32 | 28, 31 | syl 17 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
33 | 32 | ex 413 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅))))) |
34 | 33 | com3l 89 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅))))) |
35 | 25, 34 | mpcom 38 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
36 | 35 | 3expia 1120 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑃 ∈ 𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (𝑥 ∩ 𝑆) ≠ ∅))))) |
37 | 36 | com25 99 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑃 ∈ 𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))))) |
38 | 37 | ex 413 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → (𝑃 ∈ 𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))))) |
39 | 38 | com25 99 |
. . . . 5
⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑃 ∈ 𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅ → (𝑥 ∈ 𝐽 → (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))))) |
40 | 39 | 3imp1 1346 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅) → (𝑥 ∈ 𝐽 → (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
41 | 40 | ralrimiv 3102 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
42 | 24, 41 | impbida 798 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅)) |
43 | 2, 42 | bitrd 278 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅)) |