MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzerooringczr Structured version   Visualization version   GIF version

Theorem nzerooringczr 21397
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u (𝜑𝑈𝑉)
nzerooringczr.c 𝐶 = (RingCat‘𝑈)
nzerooringczr.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
nzerooringczr.e (𝜑𝑍𝑈)
nzerooringczr.i (𝜑 → ℤring𝑈)
Assertion
Ref Expression
nzerooringczr (𝜑 → (ZeroO‘𝐶) = ∅)

Proof of Theorem nzerooringczr
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
2 neq0 4318 . . 3 (¬ (ZeroO‘𝐶) = ∅ ↔ ∃ ∈ (ZeroO‘𝐶))
3 nzerooringczr.u . . . . . . . 8 (𝜑𝑈𝑉)
4 nzerooringczr.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
54ringccat 20579 . . . . . . . 8 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
7 iszeroi 17978 . . . . . . 7 ((𝐶 ∈ Cat ∧ ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
86, 7sylan 580 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
9 nzerooringczr.z . . . . . . . . 9 (𝜑𝑍 ∈ (Ring ∖ NzRing))
10 nzerooringczr.e . . . . . . . . 9 (𝜑𝑍𝑈)
113, 4, 9, 10zrtermoringc 20591 . . . . . . . 8 (𝜑𝑍 ∈ (TermO‘𝐶))
12 nzerooringczr.i . . . . . . . . . 10 (𝜑 → ℤring𝑈)
133, 12, 4irinitoringc 21396 . . . . . . . . 9 (𝜑 → ℤring ∈ (InitO‘𝐶))
146ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → 𝐶 ∈ Cat)
15 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ∈ (InitO‘𝐶))
16 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ℤring ∈ (InitO‘𝐶))
1714, 15, 16initoeu1w 17981 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ≃𝑐𝐶)ℤring)
186ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶))
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ∈ (TermO‘𝐶))
2118, 19, 20termoeu1w 17988 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐𝐶))
22 cictr 17774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
236, 22syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
24 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Iso‘𝐶) = (Iso‘𝐶)
25 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐶) = (Base‘𝐶)
269eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑍 ∈ Ring)
2710, 26elind 4166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
284, 25, 3ringcbas 20566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
2927, 28eleqtrrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑍 ∈ (Base‘𝐶))
30 zringring 21366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ring ∈ Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℤring ∈ Ring)
3212, 31elind 4166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
3332, 28eleqtrrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℤring ∈ (Base‘𝐶))
3424, 25, 6, 29, 33cic 17768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)))
35 n0 4319 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))
36 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Hom ‘𝐶) = (Hom ‘𝐶)
3725, 36, 24, 6, 29, 33isohom 17745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring))
38 ssn0 4370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝑍(Hom ‘𝐶)ℤring) ≠ ∅)
394, 25, 3, 36, 29, 33ringchom 20568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom ℤring))
4039neeq1d 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔ (𝑍 RingHom ℤring) ≠ ∅))
41 zringnzr 21377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ring ∈ NzRing
42 nrhmzr 20453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑍 ∈ (Ring ∖ NzRing) ∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) = ∅)
439, 41, 42sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍 RingHom ℤring) = ∅)
44 eqneqall 2937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑍 RingHom ℤring) = ∅ → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4640, 45sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝜑 → (ZeroO‘𝐶) = ∅))
4847expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → (𝜑 → (ZeroO‘𝐶) = ∅)))
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)))
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
5135, 50biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) → (ZeroO‘𝐶) = ∅))
5234, 51sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (ZeroO‘𝐶) = ∅)
55543exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍( ≃𝑐𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5958exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6059com34 91 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6160com25 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6261ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6317, 62mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6463ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∈ (InitO‘𝐶)) → (ℤring ∈ (InitO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6564com25 99 . . . . . . . . . . . . 13 ((𝜑 ∈ (InitO‘𝐶)) → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6665expimpd 453 . . . . . . . . . . . 12 (𝜑 → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6766com23 86 . . . . . . . . . . 11 (𝜑 → ( ∈ (Base‘𝐶) → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6867impd 410 . . . . . . . . . 10 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6968com24 95 . . . . . . . . 9 (𝜑 → (ℤring ∈ (InitO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))))
7013, 69mpd 15 . . . . . . . 8 (𝜑 → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))
7111, 70mpd 15 . . . . . . 7 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
7271adantr 480 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
738, 72mpd 15 . . . . 5 ((𝜑 ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅)
7473expcom 413 . . . 4 ( ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
7574exlimiv 1930 . . 3 (∃ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
762, 75sylbi 217 . 2 (¬ (ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
771, 76pm2.61i 182 1 (𝜑 → (ZeroO‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  cdif 3914  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  Isociso 17715  𝑐 ccic 17764  InitOcinito 17950  TermOctermo 17951  ZeroOczeroo 17952  Ringcrg 20149   RingHom crh 20385  NzRingcnzr 20428  RingCatcringc 20561  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-cat 17636  df-cid 17637  df-homf 17638  df-sect 17716  df-inv 17717  df-iso 17718  df-cic 17765  df-ssc 17779  df-resc 17780  df-subc 17781  df-inito 17953  df-termo 17954  df-zeroo 17955  df-estrc 18091  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-ringc 20562  df-cnfld 21272  df-zring 21364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator