MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzerooringczr Structured version   Visualization version   GIF version

Theorem nzerooringczr 21417
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u (𝜑𝑈𝑉)
nzerooringczr.c 𝐶 = (RingCat‘𝑈)
nzerooringczr.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
nzerooringczr.e (𝜑𝑍𝑈)
nzerooringczr.i (𝜑 → ℤring𝑈)
Assertion
Ref Expression
nzerooringczr (𝜑 → (ZeroO‘𝐶) = ∅)

Proof of Theorem nzerooringczr
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
2 neq0 4299 . . 3 (¬ (ZeroO‘𝐶) = ∅ ↔ ∃ ∈ (ZeroO‘𝐶))
3 nzerooringczr.u . . . . . . . 8 (𝜑𝑈𝑉)
4 nzerooringczr.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
54ringccat 20578 . . . . . . . 8 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
7 iszeroi 17916 . . . . . . 7 ((𝐶 ∈ Cat ∧ ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
86, 7sylan 580 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
9 nzerooringczr.z . . . . . . . . 9 (𝜑𝑍 ∈ (Ring ∖ NzRing))
10 nzerooringczr.e . . . . . . . . 9 (𝜑𝑍𝑈)
113, 4, 9, 10zrtermoringc 20590 . . . . . . . 8 (𝜑𝑍 ∈ (TermO‘𝐶))
12 nzerooringczr.i . . . . . . . . . 10 (𝜑 → ℤring𝑈)
133, 12, 4irinitoringc 21416 . . . . . . . . 9 (𝜑 → ℤring ∈ (InitO‘𝐶))
146ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → 𝐶 ∈ Cat)
15 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ∈ (InitO‘𝐶))
16 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ℤring ∈ (InitO‘𝐶))
1714, 15, 16initoeu1w 17919 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ≃𝑐𝐶)ℤring)
186ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶))
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ∈ (TermO‘𝐶))
2118, 19, 20termoeu1w 17926 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐𝐶))
22 cictr 17712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
236, 22syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
24 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Iso‘𝐶) = (Iso‘𝐶)
25 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐶) = (Base‘𝐶)
269eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑍 ∈ Ring)
2710, 26elind 4147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
284, 25, 3ringcbas 20565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
2927, 28eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑍 ∈ (Base‘𝐶))
30 zringring 21386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ring ∈ Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℤring ∈ Ring)
3212, 31elind 4147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
3332, 28eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℤring ∈ (Base‘𝐶))
3424, 25, 6, 29, 33cic 17706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)))
35 n0 4300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))
36 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Hom ‘𝐶) = (Hom ‘𝐶)
3725, 36, 24, 6, 29, 33isohom 17683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring))
38 ssn0 4351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝑍(Hom ‘𝐶)ℤring) ≠ ∅)
394, 25, 3, 36, 29, 33ringchom 20567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom ℤring))
4039neeq1d 2987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔ (𝑍 RingHom ℤring) ≠ ∅))
41 zringnzr 21397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ring ∈ NzRing
42 nrhmzr 20452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑍 ∈ (Ring ∖ NzRing) ∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) = ∅)
439, 41, 42sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍 RingHom ℤring) = ∅)
44 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑍 RingHom ℤring) = ∅ → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4640, 45sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝜑 → (ZeroO‘𝐶) = ∅))
4847expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → (𝜑 → (ZeroO‘𝐶) = ∅)))
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)))
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
5135, 50biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) → (ZeroO‘𝐶) = ∅))
5234, 51sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (ZeroO‘𝐶) = ∅)
55543exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍( ≃𝑐𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5958exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6059com34 91 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6160com25 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6261ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6317, 62mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6463ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∈ (InitO‘𝐶)) → (ℤring ∈ (InitO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6564com25 99 . . . . . . . . . . . . 13 ((𝜑 ∈ (InitO‘𝐶)) → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6665expimpd 453 . . . . . . . . . . . 12 (𝜑 → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6766com23 86 . . . . . . . . . . 11 (𝜑 → ( ∈ (Base‘𝐶) → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6867impd 410 . . . . . . . . . 10 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6968com24 95 . . . . . . . . 9 (𝜑 → (ℤring ∈ (InitO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))))
7013, 69mpd 15 . . . . . . . 8 (𝜑 → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))
7111, 70mpd 15 . . . . . . 7 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
7271adantr 480 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
738, 72mpd 15 . . . . 5 ((𝜑 ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅)
7473expcom 413 . . . 4 ( ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
7574exlimiv 1931 . . 3 (∃ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
762, 75sylbi 217 . 2 (¬ (ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
771, 76pm2.61i 182 1 (𝜑 → (ZeroO‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  cdif 3894  cin 3896  wss 3897  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  Catccat 17570  Isociso 17653  𝑐 ccic 17702  InitOcinito 17888  TermOctermo 17889  ZeroOczeroo 17890  Ringcrg 20151   RingHom crh 20387  NzRingcnzr 20427  RingCatcringc 20560  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-cat 17574  df-cid 17575  df-homf 17576  df-sect 17654  df-inv 17655  df-iso 17656  df-cic 17703  df-ssc 17717  df-resc 17718  df-subc 17719  df-inito 17891  df-termo 17892  df-zeroo 17893  df-estrc 18029  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-ringc 20561  df-cnfld 21292  df-zring 21384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator