MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzerooringczr Structured version   Visualization version   GIF version

Theorem nzerooringczr 21514
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u (𝜑𝑈𝑉)
nzerooringczr.c 𝐶 = (RingCat‘𝑈)
nzerooringczr.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
nzerooringczr.e (𝜑𝑍𝑈)
nzerooringczr.i (𝜑 → ℤring𝑈)
Assertion
Ref Expression
nzerooringczr (𝜑 → (ZeroO‘𝐶) = ∅)

Proof of Theorem nzerooringczr
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
2 neq0 4375 . . 3 (¬ (ZeroO‘𝐶) = ∅ ↔ ∃ ∈ (ZeroO‘𝐶))
3 nzerooringczr.u . . . . . . . 8 (𝜑𝑈𝑉)
4 nzerooringczr.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
54ringccat 20685 . . . . . . . 8 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
7 iszeroi 18076 . . . . . . 7 ((𝐶 ∈ Cat ∧ ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
86, 7sylan 579 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
9 nzerooringczr.z . . . . . . . . 9 (𝜑𝑍 ∈ (Ring ∖ NzRing))
10 nzerooringczr.e . . . . . . . . 9 (𝜑𝑍𝑈)
113, 4, 9, 10zrtermoringc 20697 . . . . . . . 8 (𝜑𝑍 ∈ (TermO‘𝐶))
12 nzerooringczr.i . . . . . . . . . 10 (𝜑 → ℤring𝑈)
133, 12, 4irinitoringc 21513 . . . . . . . . 9 (𝜑 → ℤring ∈ (InitO‘𝐶))
146ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → 𝐶 ∈ Cat)
15 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ∈ (InitO‘𝐶))
16 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ℤring ∈ (InitO‘𝐶))
1714, 15, 16initoeu1w 18079 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ≃𝑐𝐶)ℤring)
186ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶))
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ∈ (TermO‘𝐶))
2118, 19, 20termoeu1w 18086 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐𝐶))
22 cictr 17866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
236, 22syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
24 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Iso‘𝐶) = (Iso‘𝐶)
25 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐶) = (Base‘𝐶)
269eldifad 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑍 ∈ Ring)
2710, 26elind 4223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
284, 25, 3ringcbas 20672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
2927, 28eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑍 ∈ (Base‘𝐶))
30 zringring 21483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ring ∈ Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℤring ∈ Ring)
3212, 31elind 4223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
3332, 28eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℤring ∈ (Base‘𝐶))
3424, 25, 6, 29, 33cic 17860 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)))
35 n0 4376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))
36 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Hom ‘𝐶) = (Hom ‘𝐶)
3725, 36, 24, 6, 29, 33isohom 17837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring))
38 ssn0 4427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝑍(Hom ‘𝐶)ℤring) ≠ ∅)
394, 25, 3, 36, 29, 33ringchom 20674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom ℤring))
4039neeq1d 3006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔ (𝑍 RingHom ℤring) ≠ ∅))
41 zringnzr 21494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ring ∈ NzRing
42 nrhmzr 20563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑍 ∈ (Ring ∖ NzRing) ∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) = ∅)
439, 41, 42sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍 RingHom ℤring) = ∅)
44 eqneqall 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑍 RingHom ℤring) = ∅ → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4640, 45sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝜑 → (ZeroO‘𝐶) = ∅))
4847expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → (𝜑 → (ZeroO‘𝐶) = ∅)))
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)))
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
5135, 50biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) → (ZeroO‘𝐶) = ∅))
5234, 51sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (ZeroO‘𝐶) = ∅)
55543exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍( ≃𝑐𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5756ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5958exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6059com34 91 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6160com25 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6261ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6317, 62mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6463ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∈ (InitO‘𝐶)) → (ℤring ∈ (InitO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6564com25 99 . . . . . . . . . . . . 13 ((𝜑 ∈ (InitO‘𝐶)) → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6665expimpd 453 . . . . . . . . . . . 12 (𝜑 → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6766com23 86 . . . . . . . . . . 11 (𝜑 → ( ∈ (Base‘𝐶) → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6867impd 410 . . . . . . . . . 10 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6968com24 95 . . . . . . . . 9 (𝜑 → (ℤring ∈ (InitO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))))
7013, 69mpd 15 . . . . . . . 8 (𝜑 → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))
7111, 70mpd 15 . . . . . . 7 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
7271adantr 480 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
738, 72mpd 15 . . . . 5 ((𝜑 ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅)
7473expcom 413 . . . 4 ( ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
7574exlimiv 1929 . . 3 (∃ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
762, 75sylbi 217 . 2 (¬ (ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
771, 76pm2.61i 182 1 (𝜑 → (ZeroO‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  cdif 3973  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  Isociso 17807  𝑐 ccic 17856  InitOcinito 18048  TermOctermo 18049  ZeroOczeroo 18050  Ringcrg 20260   RingHom crh 20495  NzRingcnzr 20538  RingCatcringc 20667  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-cat 17726  df-cid 17727  df-homf 17728  df-sect 17808  df-inv 17809  df-iso 17810  df-cic 17857  df-ssc 17871  df-resc 17872  df-subc 17873  df-inito 18051  df-termo 18052  df-zeroo 18053  df-estrc 18191  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-ringc 20668  df-cnfld 21388  df-zring 21481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator