MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzerooringczr Structured version   Visualization version   GIF version

Theorem nzerooringczr 21439
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u (𝜑𝑈𝑉)
nzerooringczr.c 𝐶 = (RingCat‘𝑈)
nzerooringczr.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
nzerooringczr.e (𝜑𝑍𝑈)
nzerooringczr.i (𝜑 → ℤring𝑈)
Assertion
Ref Expression
nzerooringczr (𝜑 → (ZeroO‘𝐶) = ∅)

Proof of Theorem nzerooringczr
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2 ((ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
2 neq0 4327 . . 3 (¬ (ZeroO‘𝐶) = ∅ ↔ ∃ ∈ (ZeroO‘𝐶))
3 nzerooringczr.u . . . . . . . 8 (𝜑𝑈𝑉)
4 nzerooringczr.c . . . . . . . . 9 𝐶 = (RingCat‘𝑈)
54ringccat 20621 . . . . . . . 8 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . . . . 7 (𝜑𝐶 ∈ Cat)
7 iszeroi 18020 . . . . . . 7 ((𝐶 ∈ Cat ∧ ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
86, 7sylan 580 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → ( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))))
9 nzerooringczr.z . . . . . . . . 9 (𝜑𝑍 ∈ (Ring ∖ NzRing))
10 nzerooringczr.e . . . . . . . . 9 (𝜑𝑍𝑈)
113, 4, 9, 10zrtermoringc 20633 . . . . . . . 8 (𝜑𝑍 ∈ (TermO‘𝐶))
12 nzerooringczr.i . . . . . . . . . 10 (𝜑 → ℤring𝑈)
133, 12, 4irinitoringc 21438 . . . . . . . . 9 (𝜑 → ℤring ∈ (InitO‘𝐶))
146ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → 𝐶 ∈ Cat)
15 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ∈ (InitO‘𝐶))
16 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ℤring ∈ (InitO‘𝐶))
1714, 15, 16initoeu1w 18023 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ≃𝑐𝐶)ℤring)
186ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶))
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ∈ (TermO‘𝐶))
2118, 19, 20termoeu1w 18030 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐𝐶))
22 cictr 17816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
236, 22syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → 𝑍( ≃𝑐𝐶)ℤring)
24 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Iso‘𝐶) = (Iso‘𝐶)
25 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Base‘𝐶) = (Base‘𝐶)
269eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑍 ∈ Ring)
2710, 26elind 4175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
284, 25, 3ringcbas 20608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
2927, 28eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑍 ∈ (Base‘𝐶))
30 zringring 21408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ring ∈ Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℤring ∈ Ring)
3212, 31elind 4175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ℤring ∈ (𝑈 ∩ Ring))
3332, 28eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ℤring ∈ (Base‘𝐶))
3424, 25, 6, 29, 33cic 17810 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)))
35 n0 4328 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))
36 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Hom ‘𝐶) = (Hom ‘𝐶)
3725, 36, 24, 6, 29, 33isohom 17787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring))
38 ssn0 4379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝑍(Hom ‘𝐶)ℤring) ≠ ∅)
394, 25, 3, 36, 29, 33ringchom 20610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom ℤring))
4039neeq1d 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔ (𝑍 RingHom ℤring) ≠ ∅))
41 zringnzr 21419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ring ∈ NzRing
42 nrhmzr 20495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑍 ∈ (Ring ∖ NzRing) ∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) = ∅)
439, 41, 42sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑍 RingHom ℤring) = ∅)
44 eqneqall 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑍 RingHom ℤring) = ∅ → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → ((𝑍 RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4640, 45sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅) → (𝜑 → (ZeroO‘𝐶) = ∅))
4847expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → (𝜑 → (ZeroO‘𝐶) = ∅)))
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)))
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅))
5135, 50biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) → (ZeroO‘𝐶) = ∅))
5234, 51sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (𝑍( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑍( ≃𝑐𝐶)( ≃𝑐𝐶)ℤring) → (ZeroO‘𝐶) = ∅)
55543exp 1119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍( ≃𝑐𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅))))
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))
5958exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6059com34 91 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ≃𝑐𝐶)ℤring → (ZeroO‘𝐶) = ∅)))))
6160com25 99 . . . . . . . . . . . . . . . . 17 (𝜑 → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6261ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → (( ≃𝑐𝐶)ℤring → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6317, 62mpd 15 . . . . . . . . . . . . . . 15 (((𝜑 ∈ (InitO‘𝐶)) ∧ ℤring ∈ (InitO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6463ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∈ (InitO‘𝐶)) → (ℤring ∈ (InitO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → ( ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6564com25 99 . . . . . . . . . . . . 13 ((𝜑 ∈ (InitO‘𝐶)) → ( ∈ (TermO‘𝐶) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6665expimpd 453 . . . . . . . . . . . 12 (𝜑 → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → ( ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6766com23 86 . . . . . . . . . . 11 (𝜑 → ( ∈ (Base‘𝐶) → (( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅)))))
6867impd 410 . . . . . . . . . 10 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈ (InitO‘𝐶) → (ZeroO‘𝐶) = ∅))))
6968com24 95 . . . . . . . . 9 (𝜑 → (ℤring ∈ (InitO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))))
7013, 69mpd 15 . . . . . . . 8 (𝜑 → (𝑍 ∈ (TermO‘𝐶) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))
7111, 70mpd 15 . . . . . . 7 (𝜑 → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
7271adantr 480 . . . . . 6 ((𝜑 ∈ (ZeroO‘𝐶)) → (( ∈ (Base‘𝐶) ∧ ( ∈ (InitO‘𝐶) ∧ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))
738, 72mpd 15 . . . . 5 ((𝜑 ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅)
7473expcom 413 . . . 4 ( ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
7574exlimiv 1930 . . 3 (∃ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅))
762, 75sylbi 217 . 2 (¬ (ZeroO‘𝐶) = ∅ → (𝜑 → (ZeroO‘𝐶) = ∅))
771, 76pm2.61i 182 1 (𝜑 → (ZeroO‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  cdif 3923  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  Catccat 17674  Isociso 17757  𝑐 ccic 17806  InitOcinito 17992  TermOctermo 17993  ZeroOczeroo 17994  Ringcrg 20191   RingHom crh 20427  NzRingcnzr 20470  RingCatcringc 20603  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-cat 17678  df-cid 17679  df-homf 17680  df-sect 17758  df-inv 17759  df-iso 17760  df-cic 17807  df-ssc 17821  df-resc 17822  df-subc 17823  df-inito 17995  df-termo 17996  df-zeroo 17997  df-estrc 18133  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-ringc 20604  df-cnfld 21314  df-zring 21406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator