Step | Hyp | Ref
| Expression |
1 | | ax-1 6 |
. 2
⊢
((ZeroO‘𝐶) =
∅ → (𝜑 →
(ZeroO‘𝐶) =
∅)) |
2 | | neq0 4279 |
. . 3
⊢ (¬
(ZeroO‘𝐶) = ∅
↔ ∃ℎ ℎ ∈ (ZeroO‘𝐶)) |
3 | | nzerooringczr.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
4 | | nzerooringczr.c |
. . . . . . . . 9
⊢ 𝐶 = (RingCat‘𝑈) |
5 | 4 | ringccat 45582 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | | iszeroi 17724 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ℎ ∈ (ZeroO‘𝐶)) → (ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶)))) |
8 | 6, 7 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ (ZeroO‘𝐶)) → (ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶)))) |
9 | | nzerooringczr.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (Ring ∖
NzRing)) |
10 | | nzerooringczr.e |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
11 | 3, 4, 9, 10 | zrtermoringc 45628 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) |
12 | | nzerooringczr.i |
. . . . . . . . . 10
⊢ (𝜑 → ℤring
∈ 𝑈) |
13 | 3, 12, 4 | irinitoringc 45627 |
. . . . . . . . 9
⊢ (𝜑 → ℤring
∈ (InitO‘𝐶)) |
14 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
𝐶 ∈
Cat) |
15 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
ℎ ∈ (InitO‘𝐶)) |
16 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
ℤring ∈ (InitO‘𝐶)) |
17 | 14, 15, 16 | initoeu1w 17727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
ℎ(
≃𝑐 ‘𝐶)ℤring) |
18 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝐶 ∈ Cat) |
19 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍 ∈ (TermO‘𝐶)) |
20 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → ℎ ∈ (TermO‘𝐶)) |
21 | 18, 19, 20 | termoeu1w 17734 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → 𝑍( ≃𝑐 ‘𝐶)ℎ) |
22 | | cictr 17517 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐶 ∈ Cat ∧ 𝑍( ≃𝑐
‘𝐶)ℎ ∧ ℎ( ≃𝑐 ‘𝐶)ℤring) →
𝑍(
≃𝑐 ‘𝐶)ℤring) |
23 | 6, 22 | syl3an1 1162 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑍( ≃𝑐 ‘𝐶)ℎ ∧ ℎ( ≃𝑐 ‘𝐶)ℤring) →
𝑍(
≃𝑐 ‘𝐶)ℤring) |
24 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
25 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(Base‘𝐶) =
(Base‘𝐶) |
26 | 9 | eldifad 3899 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑍 ∈ Ring) |
27 | 10, 26 | elind 4128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Ring)) |
28 | 4, 25, 3 | ringcbas 45569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
29 | 27, 28 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
30 | | zringring 20673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
ℤring ∈ Ring |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → ℤring
∈ Ring) |
32 | 12, 31 | elind 4128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ℤring
∈ (𝑈 ∩
Ring)) |
33 | 32, 28 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ℤring
∈ (Base‘𝐶)) |
34 | 24, 25, 6, 29, 33 | cic 17511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑍( ≃𝑐 ‘𝐶)ℤring ↔
∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring))) |
35 | | n0 4280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ ↔
∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring)) |
36 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
37 | 25, 36, 24, 6, 29, 33 | isohom 17488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring)) |
38 | | ssn0 4334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅)
→ (𝑍(Hom ‘𝐶)ℤring) ≠
∅) |
39 | 4, 25, 3, 36, 29, 33 | ringchom 45571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑍(Hom ‘𝐶)ℤring) = (𝑍 RingHom
ℤring)) |
40 | 39 | neeq1d 3003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ ↔
(𝑍 RingHom
ℤring) ≠ ∅)) |
41 | | zringnzr 20682 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
ℤring ∈ NzRing |
42 | | nrhmzr 45431 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ ℤring ∈ NzRing) → (𝑍 RingHom ℤring) =
∅) |
43 | 9, 41, 42 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑍 RingHom ℤring) =
∅) |
44 | | eqneqall 2954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑍 RingHom ℤring)
= ∅ → ((𝑍
RingHom ℤring) ≠ ∅ → (ZeroO‘𝐶) = ∅)) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → ((𝑍 RingHom ℤring) ≠
∅ → (ZeroO‘𝐶) = ∅)) |
46 | 40, 45 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → ((𝑍(Hom ‘𝐶)ℤring) ≠ ∅ →
(ZeroO‘𝐶) =
∅)) |
47 | 38, 46 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) ∧ (𝑍(Iso‘𝐶)ℤring) ≠ ∅)
→ (𝜑 →
(ZeroO‘𝐶) =
∅)) |
48 | 47 | expcom 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ →
((𝑍(Iso‘𝐶)ℤring) ⊆
(𝑍(Hom ‘𝐶)ℤring) →
(𝜑 → (ZeroO‘𝐶) = ∅))) |
49 | 48 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ⊆ (𝑍(Hom ‘𝐶)ℤring) → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ →
(ZeroO‘𝐶) =
∅))) |
50 | 37, 49 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((𝑍(Iso‘𝐶)ℤring) ≠ ∅ →
(ZeroO‘𝐶) =
∅)) |
51 | 35, 50 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (∃𝑓 𝑓 ∈ (𝑍(Iso‘𝐶)ℤring) →
(ZeroO‘𝐶) =
∅)) |
52 | 34, 51 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑍( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅)) |
53 | 52 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑍( ≃𝑐 ‘𝐶)ℎ ∧ ℎ( ≃𝑐 ‘𝐶)ℤring) →
(𝑍(
≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅)) |
54 | 23, 53 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑍( ≃𝑐 ‘𝐶)ℎ ∧ ℎ( ≃𝑐 ‘𝐶)ℤring) →
(ZeroO‘𝐶) =
∅) |
55 | 54 | 3exp 1118 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑍( ≃𝑐 ‘𝐶)ℎ → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅))) |
56 | 55 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑍( ≃𝑐 ‘𝐶)ℎ → (ℎ ∈ (Base‘𝐶) → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅)))) |
57 | 56 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (𝑍( ≃𝑐 ‘𝐶)ℎ → (ℎ ∈ (Base‘𝐶) → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅)))) |
58 | 21, 57 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ℎ ∈ (TermO‘𝐶)) ∧ 𝑍 ∈ (TermO‘𝐶)) → (ℎ ∈ (Base‘𝐶) → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅))) |
59 | 58 | exp31 420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℎ ∈ (TermO‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ ∈ (Base‘𝐶) → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅))))) |
60 | 59 | com34 91 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℎ ∈ (TermO‘𝐶) → (ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ZeroO‘𝐶) =
∅))))) |
61 | 60 | com25 99 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℎ( ≃𝑐 ‘𝐶)ℤring →
(ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))) |
62 | 61 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
(ℎ(
≃𝑐 ‘𝐶)ℤring → (ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))) |
63 | 17, 62 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) ∧ ℤring ∈
(InitO‘𝐶)) →
(ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅)))) |
64 | 63 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) → (ℤring ∈
(InitO‘𝐶) →
(ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℎ ∈ (TermO‘𝐶) → (ZeroO‘𝐶) = ∅))))) |
65 | 64 | com25 99 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ℎ ∈ (InitO‘𝐶)) → (ℎ ∈ (TermO‘𝐶) → (ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈
(InitO‘𝐶) →
(ZeroO‘𝐶) =
∅))))) |
66 | 65 | expimpd 454 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶)) → (ℎ ∈ (Base‘𝐶) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈
(InitO‘𝐶) →
(ZeroO‘𝐶) =
∅))))) |
67 | 66 | com23 86 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℎ ∈ (Base‘𝐶) → ((ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶)) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈
(InitO‘𝐶) →
(ZeroO‘𝐶) =
∅))))) |
68 | 67 | impd 411 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶))) → (𝑍 ∈ (TermO‘𝐶) → (ℤring ∈
(InitO‘𝐶) →
(ZeroO‘𝐶) =
∅)))) |
69 | 68 | com24 95 |
. . . . . . . . 9
⊢ (𝜑 → (ℤring
∈ (InitO‘𝐶)
→ (𝑍 ∈
(TermO‘𝐶) →
((ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)))) |
70 | 13, 69 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 ∈ (TermO‘𝐶) → ((ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅))) |
71 | 11, 70 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → ((ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)) |
72 | 71 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ (ZeroO‘𝐶)) → ((ℎ ∈ (Base‘𝐶) ∧ (ℎ ∈ (InitO‘𝐶) ∧ ℎ ∈ (TermO‘𝐶))) → (ZeroO‘𝐶) = ∅)) |
73 | 8, 72 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ (ZeroO‘𝐶)) → (ZeroO‘𝐶) = ∅) |
74 | 73 | expcom 414 |
. . . 4
⊢ (ℎ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅)) |
75 | 74 | exlimiv 1933 |
. . 3
⊢
(∃ℎ ℎ ∈ (ZeroO‘𝐶) → (𝜑 → (ZeroO‘𝐶) = ∅)) |
76 | 2, 75 | sylbi 216 |
. 2
⊢ (¬
(ZeroO‘𝐶) = ∅
→ (𝜑 →
(ZeroO‘𝐶) =
∅)) |
77 | 1, 76 | pm2.61i 182 |
1
⊢ (𝜑 → (ZeroO‘𝐶) = ∅) |