HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat4i Structured version   Visualization version   GIF version

Theorem atcvat4i 32416
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1 𝐴C
Assertion
Ref Expression
atcvat4i ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem atcvat4i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . 9 𝐴C
21hatomici 32378 . . . . . . . 8 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 atelch 32363 . . . . . . . . . . . . . . 15 (𝐶 ∈ HAtoms → 𝐶C )
4 atelch 32363 . . . . . . . . . . . . . . 15 (𝑥 ∈ HAtoms → 𝑥C )
5 chub1 31526 . . . . . . . . . . . . . . 15 ((𝐶C𝑥C ) → 𝐶 ⊆ (𝐶 𝑥))
63, 4, 5syl2an 596 . . . . . . . . . . . . . 14 ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐶 ⊆ (𝐶 𝑥))
7 sseq1 4009 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐶 ⊆ (𝐶 𝑥)))
86, 7imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 = 𝐶 → ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐶 𝑥)))
98expd 415 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐶 ∈ HAtoms → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥))))
109impcom 407 . . . . . . . . . . 11 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥)))
1110anim2d 612 . . . . . . . . . 10 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → ((𝑥𝐴𝑥 ∈ HAtoms) → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1211expcomd 416 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → (𝑥𝐴 → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1312reximdvai 3165 . . . . . . . 8 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
142, 13syl5 34 . . . . . . 7 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1514ex 412 . . . . . 6 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1615a1i 11 . . . . 5 (𝐵 ⊆ (𝐴 𝐶) → (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1716com4l 92 . . . 4 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1817imp4a 422 . . 3 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1918adantl 481 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
20 atelch 32363 . . . . . . . 8 (𝐵 ∈ HAtoms → 𝐵C )
21 chlejb2 31532 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C ) → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
221, 21mpan2 691 . . . . . . . . . . . . . 14 (𝐶C → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 ((𝐶C𝐶𝐴) → (𝐴 𝐶) = 𝐴)
2423sseq2d 4016 . . . . . . . . . . . 12 ((𝐶C𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) ↔ 𝐵𝐴))
2524biimpa 476 . . . . . . . . . . 11 (((𝐶C𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴)
2625expl 457 . . . . . . . . . 10 (𝐶C → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
2726adantl 481 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
28 chub2 31527 . . . . . . . . 9 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐶 𝐵))
2927, 28jctird 526 . . . . . . . 8 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3020, 3, 29syl2an 596 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
31 simpl 482 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ∈ HAtoms)
3230, 31jctild 525 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵)))))
3332impl 455 . . . . 5 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
34 sseq1 4009 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
35 oveq2 7439 . . . . . . . 8 (𝑥 = 𝐵 → (𝐶 𝑥) = (𝐶 𝐵))
3635sseq2d 4016 . . . . . . 7 (𝑥 = 𝐵 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 𝐵)))
3734, 36anbi12d 632 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3837rspcev 3622 . . . . 5 ((𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
3933, 38syl 17 . . . 4 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4039adantrl 716 . . 3 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ (𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4140exp31 419 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶𝐴 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
42 simpr 484 . . 3 ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → 𝐵 ⊆ (𝐴 𝐶))
43 ioran 986 . . . 4 (¬ (𝐵 = 𝐶𝐶𝐴) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴))
441atcvat3i 32415 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
453ad2antlr 727 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐶C )
4644imp 406 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms)
47 simpll 767 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ∈ HAtoms)
4845, 46, 473jca 1129 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
49 inss2 4238 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐵 𝐶)
50 chjcom 31525 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → (𝐵 𝐶) = (𝐶 𝐵))
5120, 3, 50syl2an 596 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 𝐶) = (𝐶 𝐵))
5249, 51sseqtrid 4026 . . . . . . . . . . . 12 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
5352adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
54 atnssm0 32395 . . . . . . . . . . . . . . . . 17 ((𝐴C𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
551, 54mpan 690 . . . . . . . . . . . . . . . 16 (𝐶 ∈ HAtoms → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
57 inss1 4237 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴
58 sslin 4243 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴))
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴)
60 incom 4209 . . . . . . . . . . . . . . . . . 18 (𝐶𝐴) = (𝐴𝐶)
6159, 60sseqtri 4032 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶)
62 sseq2 4010 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶) = 0 → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶) ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0))
6361, 62mpbii 233 . . . . . . . . . . . . . . . 16 ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0)
64 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → 𝐶C )
65 chjcl 31376 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
66 chincl 31518 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
671, 65, 66sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
68 chincl 31518 . . . . . . . . . . . . . . . . . . 19 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
6964, 67, 68syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐵C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
7020, 3, 69syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
71 chle0 31462 . . . . . . . . . . . . . . . . 17 ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7363, 72imbitrid 244 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7456, 73sylbid 240 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7574imp 406 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐶𝐴) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7675adantrl 716 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴)) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7776adantrr 717 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7853, 77jca 511 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
79 atexch 32400 . . . . . . . . . 10 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8048, 78, 79sylc 65 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8180, 57jctil 519 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8281ex 412 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8344, 82jcad 512 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))))
84 sseq1 4009 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝑥𝐴 ↔ (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴))
85 oveq2 7439 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐶 𝑥) = (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8685sseq2d 4016 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8784, 86anbi12d 632 . . . . . . 7 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8887rspcev 3622 . . . . . 6 (((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
8983, 88syl6 35 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
9089expd 415 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9143, 90biimtrid 242 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9242, 91syl7 74 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9319, 41, 92ecase3d 1035 1 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cin 3950  wss 3951  (class class class)co 7431   C cch 30948   chj 30952  0c0h 30954  HAtomscat 30984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-span 31328  df-chj 31329  df-chsup 31330  df-pjh 31414  df-cv 32298  df-at 32357
This theorem is referenced by:  mdsymlem3  32424
  Copyright terms: Public domain W3C validator