HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat4i Structured version   Visualization version   GIF version

Theorem atcvat4i 32341
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1 𝐴C
Assertion
Ref Expression
atcvat4i ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem atcvat4i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . 9 𝐴C
21hatomici 32303 . . . . . . . 8 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 atelch 32288 . . . . . . . . . . . . . . 15 (𝐶 ∈ HAtoms → 𝐶C )
4 atelch 32288 . . . . . . . . . . . . . . 15 (𝑥 ∈ HAtoms → 𝑥C )
5 chub1 31451 . . . . . . . . . . . . . . 15 ((𝐶C𝑥C ) → 𝐶 ⊆ (𝐶 𝑥))
63, 4, 5syl2an 596 . . . . . . . . . . . . . 14 ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐶 ⊆ (𝐶 𝑥))
7 sseq1 3961 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐶 ⊆ (𝐶 𝑥)))
86, 7imbitrrid 246 . . . . . . . . . . . . 13 (𝐵 = 𝐶 → ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐶 𝑥)))
98expd 415 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐶 ∈ HAtoms → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥))))
109impcom 407 . . . . . . . . . . 11 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥)))
1110anim2d 612 . . . . . . . . . 10 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → ((𝑥𝐴𝑥 ∈ HAtoms) → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1211expcomd 416 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → (𝑥𝐴 → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1312reximdvai 3140 . . . . . . . 8 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
142, 13syl5 34 . . . . . . 7 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1514ex 412 . . . . . 6 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1615a1i 11 . . . . 5 (𝐵 ⊆ (𝐴 𝐶) → (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1716com4l 92 . . . 4 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1817imp4a 422 . . 3 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1918adantl 481 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
20 atelch 32288 . . . . . . . 8 (𝐵 ∈ HAtoms → 𝐵C )
21 chlejb2 31457 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C ) → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
221, 21mpan2 691 . . . . . . . . . . . . . 14 (𝐶C → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 ((𝐶C𝐶𝐴) → (𝐴 𝐶) = 𝐴)
2423sseq2d 3968 . . . . . . . . . . . 12 ((𝐶C𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) ↔ 𝐵𝐴))
2524biimpa 476 . . . . . . . . . . 11 (((𝐶C𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴)
2625expl 457 . . . . . . . . . 10 (𝐶C → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
2726adantl 481 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
28 chub2 31452 . . . . . . . . 9 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐶 𝐵))
2927, 28jctird 526 . . . . . . . 8 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3020, 3, 29syl2an 596 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
31 simpl 482 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ∈ HAtoms)
3230, 31jctild 525 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵)))))
3332impl 455 . . . . 5 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
34 sseq1 3961 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
35 oveq2 7357 . . . . . . . 8 (𝑥 = 𝐵 → (𝐶 𝑥) = (𝐶 𝐵))
3635sseq2d 3968 . . . . . . 7 (𝑥 = 𝐵 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 𝐵)))
3734, 36anbi12d 632 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3837rspcev 3577 . . . . 5 ((𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
3933, 38syl 17 . . . 4 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4039adantrl 716 . . 3 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ (𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4140exp31 419 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶𝐴 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
42 simpr 484 . . 3 ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → 𝐵 ⊆ (𝐴 𝐶))
43 ioran 985 . . . 4 (¬ (𝐵 = 𝐶𝐶𝐴) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴))
441atcvat3i 32340 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
453ad2antlr 727 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐶C )
4644imp 406 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms)
47 simpll 766 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ∈ HAtoms)
4845, 46, 473jca 1128 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
49 inss2 4189 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐵 𝐶)
50 chjcom 31450 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → (𝐵 𝐶) = (𝐶 𝐵))
5120, 3, 50syl2an 596 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 𝐶) = (𝐶 𝐵))
5249, 51sseqtrid 3978 . . . . . . . . . . . 12 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
5352adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
54 atnssm0 32320 . . . . . . . . . . . . . . . . 17 ((𝐴C𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
551, 54mpan 690 . . . . . . . . . . . . . . . 16 (𝐶 ∈ HAtoms → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
57 inss1 4188 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴
58 sslin 4194 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴))
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴)
60 incom 4160 . . . . . . . . . . . . . . . . . 18 (𝐶𝐴) = (𝐴𝐶)
6159, 60sseqtri 3984 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶)
62 sseq2 3962 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶) = 0 → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶) ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0))
6361, 62mpbii 233 . . . . . . . . . . . . . . . 16 ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0)
64 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → 𝐶C )
65 chjcl 31301 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
66 chincl 31443 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
671, 65, 66sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
68 chincl 31443 . . . . . . . . . . . . . . . . . . 19 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
6964, 67, 68syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐵C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
7020, 3, 69syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
71 chle0 31387 . . . . . . . . . . . . . . . . 17 ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7363, 72imbitrid 244 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7456, 73sylbid 240 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7574imp 406 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐶𝐴) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7675adantrl 716 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴)) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7776adantrr 717 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7853, 77jca 511 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
79 atexch 32325 . . . . . . . . . 10 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8048, 78, 79sylc 65 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8180, 57jctil 519 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8281ex 412 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8344, 82jcad 512 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))))
84 sseq1 3961 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝑥𝐴 ↔ (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴))
85 oveq2 7357 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐶 𝑥) = (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8685sseq2d 3968 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8784, 86anbi12d 632 . . . . . . 7 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8887rspcev 3577 . . . . . 6 (((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
8983, 88syl6 35 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
9089expd 415 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9143, 90biimtrid 242 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9242, 91syl7 74 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9319, 41, 92ecase3d 1034 1 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3902  wss 3903  (class class class)co 7349   C cch 30873   chj 30877  0c0h 30879  HAtomscat 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029  ax-hcompl 31146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ssp 30666  df-ph 30757  df-cbn 30807  df-hnorm 30912  df-hba 30913  df-hvsub 30915  df-hlim 30916  df-hcau 30917  df-sh 31151  df-ch 31165  df-oc 31196  df-ch0 31197  df-shs 31252  df-span 31253  df-chj 31254  df-chsup 31255  df-pjh 31339  df-cv 32223  df-at 32282
This theorem is referenced by:  mdsymlem3  32349
  Copyright terms: Public domain W3C validator