| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fisup2g | Structured version Visualization version GIF version | ||
| Description: A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fisup2g | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soss 5544 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
| 2 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → 𝑅 Or 𝐵) | |
| 3 | fisupg 9172 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 4 | 2, 3 | supeu 9338 | . . . . . 6 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 5 | 4 | 3exp 1119 | . . . . 5 ⊢ (𝑅 Or 𝐵 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))))) |
| 6 | 1, 5 | syl6 35 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))))) |
| 7 | 6 | com4l 92 | . . 3 ⊢ (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → (𝐵 ⊆ 𝐴 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))))) |
| 8 | 7 | 3imp2 1350 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 9 | reurex 3350 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
| 10 | breq2 5095 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝑥)) | |
| 11 | 10 | rspcev 3577 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦𝑅𝑥) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 13 | 12 | ralrimivw 3128 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 14 | 13 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 15 | 14 | anim2d 612 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) |
| 16 | 15 | reximia 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| 17 | 8, 9, 16 | 3syl 18 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 Or wor 5523 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-en 8870 df-fin 8873 |
| This theorem is referenced by: fisupcl 9354 supgtoreq 9355 suprfinzcl 12587 ssnn0fi 13892 ssnnssfz 32768 ssnn0ssfz 48386 |
| Copyright terms: Public domain | W3C validator |