MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnbnd Structured version   Visualization version   GIF version

Theorem expnbnd 13203
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 1nn 11289 . . 3 1 ∈ ℕ
2 1re 10295 . . . . . . . 8 1 ∈ ℝ
3 lttr 10370 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
42, 3mp3an2 1573 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
54exp4b 421 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 1 → (1 < 𝐵𝐴 < 𝐵))))
65com34 91 . . . . 5 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (𝐴 < 1 → 𝐴 < 𝐵))))
763imp1 1456 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < 𝐵)
8 recn 10281 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 exp1 13076 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
108, 9syl 17 . . . . . 6 (𝐵 ∈ ℝ → (𝐵↑1) = 𝐵)
11103ad2ant2 1164 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵↑1) = 𝐵)
1211adantr 472 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → (𝐵↑1) = 𝐵)
137, 12breqtrrd 4839 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < (𝐵↑1))
14 oveq2 6852 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
1514breq2d 4823 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
1615rspcev 3462 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
171, 13, 16sylancr 581 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
18 peano2rem 10604 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1918adantr 472 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
20 peano2rem 10604 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
2120adantr 472 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
2221adantl 473 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
23 posdif 10777 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
242, 23mpan 681 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
2524biimpa 468 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
2625gt0ne0d 10848 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ≠ 0)
2726adantl 473 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ≠ 0)
2819, 22, 27redivcld 11109 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
2928adantll 705 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
3018adantl 473 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
31 subge0 10797 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
322, 31mpan2 682 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
3332biimparc 471 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → 0 ≤ (𝐴 − 1))
3430, 33jca 507 . . . . . . . . 9 ((1 ≤ 𝐴𝐴 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)))
3521, 25jca 507 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1)))
36 divge0 11148 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)) ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
3734, 35, 36syl2an 589 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
38 flge0nn0 12832 . . . . . . . 8 ((((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ ∧ 0 ≤ ((𝐴 − 1) / (𝐵 − 1))) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
3929, 37, 38syl2anc 579 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
40 nn0p1nn 11581 . . . . . . 7 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
4139, 40syl 17 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
42 simplr 785 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 ∈ ℝ)
4321adantl 473 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
44 peano2nn0 11582 . . . . . . . . . . 11 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4539, 44syl 17 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4645nn0red 11601 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ)
4743, 46remulcld 10326 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
48 peano2re 10465 . . . . . . . 8 (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
50 simprl 787 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐵 ∈ ℝ)
51 reexpcl 13087 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
5250, 45, 51syl2anc 579 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
53 flltp1 12812 . . . . . . . . . 10 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5429, 53syl 17 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5530adantr 472 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
5625adantl 473 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 < (𝐵 − 1))
57 ltdivmul 11154 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5855, 46, 43, 56, 57syl112anc 1493 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5954, 58mpbid 223 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
60 ltsubadd 10754 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
612, 60mp3an2 1573 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6242, 47, 61syl2anc 579 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6359, 62mpbid 223 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1))
64 0lt1 10806 . . . . . . . . . . . 12 0 < 1
65 0re 10297 . . . . . . . . . . . . 13 0 ∈ ℝ
66 lttr 10370 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6765, 2, 66mp3an12 1575 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6864, 67mpani 687 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
69 ltle 10382 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
7065, 69mpan 681 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
7168, 70syld 47 . . . . . . . . . 10 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 ≤ 𝐵))
7271imp 395 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7372adantl 473 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ 𝐵)
74 bernneq2 13201 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7550, 45, 73, 74syl3anc 1490 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7642, 49, 52, 63, 75ltletrd 10453 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
77 oveq2 6852 . . . . . . . 8 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐵𝑘) = (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7877breq2d 4823 . . . . . . 7 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
7978rspcev 3462 . . . . . 6 ((((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ ∧ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8041, 76, 79syl2anc 579 . . . . 5 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8180exp43 427 . . . 4 (1 ≤ 𝐴 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
8281com4l 92 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (1 ≤ 𝐴 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
83823imp1 1456 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 ≤ 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
84 simp1 1166 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
85 1red 10296 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
8617, 83, 84, 85ltlecasei 10401 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4811  cfv 6070  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196   < clt 10330  cle 10331  cmin 10522   / cdiv 10940  cn 11276  0cn0 11540  cfl 12802  cexp 13070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-fl 12804  df-seq 13012  df-exp 13071
This theorem is referenced by:  expnlbnd  13204  expmulnbnd  13206  bitsfzolem  15440  bitsfi  15443  pclem  15825  aaliou3lem8  24394  ostth2lem1  25601  ostth3  25621  knoppndvlem18  32962
  Copyright terms: Public domain W3C validator