MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnbnd Structured version   Visualization version   GIF version

Theorem expnbnd 13875
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 1nn 11914 . . 3 1 ∈ ℕ
2 1re 10906 . . . . . . . 8 1 ∈ ℝ
3 lttr 10982 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
42, 3mp3an2 1447 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
54exp4b 430 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 1 → (1 < 𝐵𝐴 < 𝐵))))
65com34 91 . . . . 5 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (𝐴 < 1 → 𝐴 < 𝐵))))
763imp1 1345 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < 𝐵)
8 recn 10892 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 exp1 13716 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
108, 9syl 17 . . . . . 6 (𝐵 ∈ ℝ → (𝐵↑1) = 𝐵)
11103ad2ant2 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵↑1) = 𝐵)
1211adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → (𝐵↑1) = 𝐵)
137, 12breqtrrd 5098 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < (𝐵↑1))
14 oveq2 7263 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
1514breq2d 5082 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
1615rspcev 3552 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
171, 13, 16sylancr 586 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
18 peano2rem 11218 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1918adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
20 peano2rem 11218 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
2120adantr 480 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
2221adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
23 posdif 11398 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
242, 23mpan 686 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
2524biimpa 476 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
2625gt0ne0d 11469 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ≠ 0)
2726adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ≠ 0)
2819, 22, 27redivcld 11733 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
2928adantll 710 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
3018adantl 481 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
31 subge0 11418 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
322, 31mpan2 687 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
3332biimparc 479 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → 0 ≤ (𝐴 − 1))
3430, 33jca 511 . . . . . . . . 9 ((1 ≤ 𝐴𝐴 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)))
3521, 25jca 511 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1)))
36 divge0 11774 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)) ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
3734, 35, 36syl2an 595 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
38 flge0nn0 13468 . . . . . . . 8 ((((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ ∧ 0 ≤ ((𝐴 − 1) / (𝐵 − 1))) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
3929, 37, 38syl2anc 583 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
40 nn0p1nn 12202 . . . . . . 7 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
4139, 40syl 17 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
42 simplr 765 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 ∈ ℝ)
4321adantl 481 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
44 peano2nn0 12203 . . . . . . . . . . 11 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4539, 44syl 17 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4645nn0red 12224 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ)
4743, 46remulcld 10936 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
48 peano2re 11078 . . . . . . . 8 (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
50 simprl 767 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐵 ∈ ℝ)
51 reexpcl 13727 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
5250, 45, 51syl2anc 583 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
53 flltp1 13448 . . . . . . . . . 10 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5429, 53syl 17 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5530adantr 480 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
5625adantl 481 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 < (𝐵 − 1))
57 ltdivmul 11780 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5855, 46, 43, 56, 57syl112anc 1372 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5954, 58mpbid 231 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
60 ltsubadd 11375 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
612, 60mp3an2 1447 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6242, 47, 61syl2anc 583 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6359, 62mpbid 231 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1))
64 0lt1 11427 . . . . . . . . . . . 12 0 < 1
65 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
66 lttr 10982 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6765, 2, 66mp3an12 1449 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6864, 67mpani 692 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
69 ltle 10994 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
7065, 69mpan 686 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
7168, 70syld 47 . . . . . . . . . 10 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 ≤ 𝐵))
7271imp 406 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7372adantl 481 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ 𝐵)
74 bernneq2 13873 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7550, 45, 73, 74syl3anc 1369 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7642, 49, 52, 63, 75ltletrd 11065 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
77 oveq2 7263 . . . . . . . 8 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐵𝑘) = (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7877breq2d 5082 . . . . . . 7 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
7978rspcev 3552 . . . . . 6 ((((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ ∧ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8041, 76, 79syl2anc 583 . . . . 5 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8180exp43 436 . . . 4 (1 ≤ 𝐴 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
8281com4l 92 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (1 ≤ 𝐴 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
83823imp1 1345 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 ≤ 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
84 simp1 1134 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
85 1red 10907 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
8617, 83, 84, 85ltlecasei 11013 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cfl 13438  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fl 13440  df-seq 13650  df-exp 13711
This theorem is referenced by:  expnlbnd  13876  expmulnbnd  13878  bitsfzolem  16069  bitsfi  16072  pclem  16467  aaliou3lem8  25410  ostth2lem1  26671  ostth3  26691  knoppndvlem18  34636
  Copyright terms: Public domain W3C validator