Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnbnd Structured version   Visualization version   GIF version

Theorem expnbnd 13583
 Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 1nn 11638 . . 3 1 ∈ ℕ
2 1re 10630 . . . . . . . 8 1 ∈ ℝ
3 lttr 10706 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
42, 3mp3an2 1442 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
54exp4b 431 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 1 → (1 < 𝐵𝐴 < 𝐵))))
65com34 91 . . . . 5 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (𝐴 < 1 → 𝐴 < 𝐵))))
763imp1 1341 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < 𝐵)
8 recn 10616 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 exp1 13425 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
108, 9syl 17 . . . . . 6 (𝐵 ∈ ℝ → (𝐵↑1) = 𝐵)
11103ad2ant2 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵↑1) = 𝐵)
1211adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → (𝐵↑1) = 𝐵)
137, 12breqtrrd 5091 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < (𝐵↑1))
14 oveq2 7156 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
1514breq2d 5075 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
1615rspcev 3627 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
171, 13, 16sylancr 587 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
18 peano2rem 10942 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1918adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
20 peano2rem 10942 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
2120adantr 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
2221adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
23 posdif 11122 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
242, 23mpan 686 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
2524biimpa 477 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
2625gt0ne0d 11193 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ≠ 0)
2726adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ≠ 0)
2819, 22, 27redivcld 11457 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
2928adantll 710 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
3018adantl 482 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
31 subge0 11142 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
322, 31mpan2 687 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
3332biimparc 480 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → 0 ≤ (𝐴 − 1))
3430, 33jca 512 . . . . . . . . 9 ((1 ≤ 𝐴𝐴 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)))
3521, 25jca 512 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1)))
36 divge0 11498 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)) ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
3734, 35, 36syl2an 595 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
38 flge0nn0 13180 . . . . . . . 8 ((((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ ∧ 0 ≤ ((𝐴 − 1) / (𝐵 − 1))) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
3929, 37, 38syl2anc 584 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
40 nn0p1nn 11925 . . . . . . 7 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
4139, 40syl 17 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
42 simplr 765 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 ∈ ℝ)
4321adantl 482 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
44 peano2nn0 11926 . . . . . . . . . . 11 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4539, 44syl 17 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4645nn0red 11945 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ)
4743, 46remulcld 10660 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
48 peano2re 10802 . . . . . . . 8 (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
50 simprl 767 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐵 ∈ ℝ)
51 reexpcl 13436 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
5250, 45, 51syl2anc 584 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
53 flltp1 13160 . . . . . . . . . 10 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5429, 53syl 17 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5530adantr 481 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
5625adantl 482 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 < (𝐵 − 1))
57 ltdivmul 11504 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5855, 46, 43, 56, 57syl112anc 1368 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5954, 58mpbid 233 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
60 ltsubadd 11099 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
612, 60mp3an2 1442 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6242, 47, 61syl2anc 584 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6359, 62mpbid 233 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1))
64 0lt1 11151 . . . . . . . . . . . 12 0 < 1
65 0re 10632 . . . . . . . . . . . . 13 0 ∈ ℝ
66 lttr 10706 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6765, 2, 66mp3an12 1444 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6864, 67mpani 692 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
69 ltle 10718 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
7065, 69mpan 686 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
7168, 70syld 47 . . . . . . . . . 10 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 ≤ 𝐵))
7271imp 407 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7372adantl 482 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ 𝐵)
74 bernneq2 13581 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7550, 45, 73, 74syl3anc 1365 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7642, 49, 52, 63, 75ltletrd 10789 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
77 oveq2 7156 . . . . . . . 8 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐵𝑘) = (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7877breq2d 5075 . . . . . . 7 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
7978rspcev 3627 . . . . . 6 ((((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ ∧ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8041, 76, 79syl2anc 584 . . . . 5 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8180exp43 437 . . . 4 (1 ≤ 𝐴 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
8281com4l 92 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (1 ≤ 𝐴 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
83823imp1 1341 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 ≤ 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
84 simp1 1130 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
85 1red 10631 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
8617, 83, 84, 85ltlecasei 10737 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∃wrex 3144   class class class wbr 5063  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   ≤ cle 10665   − cmin 10859   / cdiv 11286  ℕcn 11627  ℕ0cn0 11886  ⌊cfl 13150  ↑cexp 13419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fl 13152  df-seq 13360  df-exp 13420 This theorem is referenced by:  expnlbnd  13584  expmulnbnd  13586  bitsfzolem  15773  bitsfi  15776  pclem  16165  aaliou3lem8  24849  ostth2lem1  26108  ostth3  26128  knoppndvlem18  33752
 Copyright terms: Public domain W3C validator