MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facwordi Structured version   Visualization version   GIF version

Theorem facwordi 14096
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))

Proof of Theorem facwordi
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5093 . . . . . 6 (𝑗 = 0 → (𝑀𝑗𝑀 ≤ 0))
21anbi2d 629 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ 0)))
3 fveq2 6819 . . . . . 6 (𝑗 = 0 → (!‘𝑗) = (!‘0))
43breq2d 5101 . . . . 5 (𝑗 = 0 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘0)))
52, 4imbi12d 344 . . . 4 (𝑗 = 0 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))))
6 breq2 5093 . . . . . 6 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
76anbi2d 629 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑘)))
8 fveq2 6819 . . . . . 6 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98breq2d 5101 . . . . 5 (𝑗 = 𝑘 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑘)))
107, 9imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘))))
11 breq2 5093 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
1211anbi2d 629 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1))))
13 fveq2 6819 . . . . . 6 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1413breq2d 5101 . . . . 5 (𝑗 = (𝑘 + 1) → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
1512, 14imbi12d 344 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
16 breq2 5093 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
1716anbi2d 629 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑁)))
18 fveq2 6819 . . . . . 6 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
1918breq2d 5101 . . . . 5 (𝑗 = 𝑁 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑁)))
2017, 19imbi12d 344 . . . 4 (𝑗 = 𝑁 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))))
21 nn0le0eq0 12354 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
2221biimpa 477 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → 𝑀 = 0)
2322fveq2d 6823 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) = (!‘0))
24 fac0 14083 . . . . . . 7 (!‘0) = 1
25 1re 11068 . . . . . . 7 1 ∈ ℝ
2624, 25eqeltri 2833 . . . . . 6 (!‘0) ∈ ℝ
2726leidi 11602 . . . . 5 (!‘0) ≤ (!‘0)
2823, 27eqbrtrdi 5128 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))
29 impexp 451 . . . . 5 (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) ↔ (𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))))
30 nn0re 12335 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
31 nn0re 12335 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
32 peano2re 11241 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
34 leloe 11154 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
3530, 33, 34syl2an 596 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
36 nn0leltp1 12472 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘𝑀 < (𝑘 + 1)))
37 faccl 14090 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3837nnred 12081 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℝ)
3937nnnn0d 12386 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ0)
4039nn0ge0d 12389 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ (!‘𝑘))
41 nn0p1nn 12365 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
4241nnge1d 12114 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 1 ≤ (𝑘 + 1))
4338, 33, 40, 42lemulge11d 12005 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ ((!‘𝑘) · (𝑘 + 1)))
44 facp1 14085 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4543, 44breqtrrd 5117 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
4645adantl 482 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
47 faccl 14090 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
4847nnred 12081 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
4948adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
5038adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
51 peano2nn0 12366 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
5251faccld 14091 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5352nnred 12081 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
5453adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℝ)
55 letr 11162 . . . . . . . . . . . . . . . . 17 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑘) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5649, 50, 54, 55syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5746, 56mpan2d 691 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑀) ≤ (!‘𝑘) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5857imim2d 57 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀𝑘 → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
5958com23 86 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6036, 59sylbird 259 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 < (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
61 fveq2 6819 . . . . . . . . . . . . . . 15 (𝑀 = (𝑘 + 1) → (!‘𝑀) = (!‘(𝑘 + 1)))
6248leidd 11634 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (!‘𝑀) ≤ (!‘𝑀))
63 breq2 5093 . . . . . . . . . . . . . . . 16 ((!‘𝑀) = (!‘(𝑘 + 1)) → ((!‘𝑀) ≤ (!‘𝑀) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6462, 63syl5ibcom 244 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((!‘𝑀) = (!‘(𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6561, 64syl5 34 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6665adantr 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6766a1dd 50 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6860, 67jaod 856 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1)) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6935, 68sylbid 239 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7069ex 413 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7170com13 88 . . . . . . . 8 (𝑀 ≤ (𝑘 + 1) → (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7271com4l 92 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7372a2d 29 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → (𝑀 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7473imp4a 423 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7529, 74biimtrid 241 . . . 4 (𝑘 ∈ ℕ0 → (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
765, 10, 15, 20, 28, 75nn0ind 12508 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁)))
77763impib 1115 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
78773com12 1122 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5089  cfv 6473  (class class class)co 7329  cr 10963  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969   < clt 11102  cle 11103  0cn0 12326  !cfa 14080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-n0 12327  df-z 12413  df-uz 12676  df-seq 13815  df-fac 14081
This theorem is referenced by:  facavg  14108  aaliou3lem6  25606  factwoffsmonot  40413
  Copyright terms: Public domain W3C validator