MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facwordi Structured version   Visualization version   GIF version

Theorem facwordi 13931
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))

Proof of Theorem facwordi
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5074 . . . . . 6 (𝑗 = 0 → (𝑀𝑗𝑀 ≤ 0))
21anbi2d 628 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ 0)))
3 fveq2 6756 . . . . . 6 (𝑗 = 0 → (!‘𝑗) = (!‘0))
43breq2d 5082 . . . . 5 (𝑗 = 0 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘0)))
52, 4imbi12d 344 . . . 4 (𝑗 = 0 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))))
6 breq2 5074 . . . . . 6 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
76anbi2d 628 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑘)))
8 fveq2 6756 . . . . . 6 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98breq2d 5082 . . . . 5 (𝑗 = 𝑘 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑘)))
107, 9imbi12d 344 . . . 4 (𝑗 = 𝑘 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘))))
11 breq2 5074 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
1211anbi2d 628 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1))))
13 fveq2 6756 . . . . . 6 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1413breq2d 5082 . . . . 5 (𝑗 = (𝑘 + 1) → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
1512, 14imbi12d 344 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
16 breq2 5074 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
1716anbi2d 628 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑁)))
18 fveq2 6756 . . . . . 6 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
1918breq2d 5082 . . . . 5 (𝑗 = 𝑁 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑁)))
2017, 19imbi12d 344 . . . 4 (𝑗 = 𝑁 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))))
21 nn0le0eq0 12191 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
2221biimpa 476 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → 𝑀 = 0)
2322fveq2d 6760 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) = (!‘0))
24 fac0 13918 . . . . . . 7 (!‘0) = 1
25 1re 10906 . . . . . . 7 1 ∈ ℝ
2624, 25eqeltri 2835 . . . . . 6 (!‘0) ∈ ℝ
2726leidi 11439 . . . . 5 (!‘0) ≤ (!‘0)
2823, 27eqbrtrdi 5109 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))
29 impexp 450 . . . . 5 (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) ↔ (𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))))
30 nn0re 12172 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
31 nn0re 12172 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
32 peano2re 11078 . . . . . . . . . . . . 13 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
34 leloe 10992 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
3530, 33, 34syl2an 595 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
36 nn0leltp1 12309 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘𝑀 < (𝑘 + 1)))
37 faccl 13925 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3837nnred 11918 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℝ)
3937nnnn0d 12223 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ0)
4039nn0ge0d 12226 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ (!‘𝑘))
41 nn0p1nn 12202 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
4241nnge1d 11951 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 1 ≤ (𝑘 + 1))
4338, 33, 40, 42lemulge11d 11842 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ ((!‘𝑘) · (𝑘 + 1)))
44 facp1 13920 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4543, 44breqtrrd 5098 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
47 faccl 13925 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
4847nnred 11918 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
5038adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
51 peano2nn0 12203 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
5251faccld 13926 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5352nnred 11918 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
5453adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℝ)
55 letr 10999 . . . . . . . . . . . . . . . . 17 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑘) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5649, 50, 54, 55syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5746, 56mpan2d 690 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑀) ≤ (!‘𝑘) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5857imim2d 57 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀𝑘 → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
5958com23 86 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6036, 59sylbird 259 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 < (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
61 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑀 = (𝑘 + 1) → (!‘𝑀) = (!‘(𝑘 + 1)))
6248leidd 11471 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (!‘𝑀) ≤ (!‘𝑀))
63 breq2 5074 . . . . . . . . . . . . . . . 16 ((!‘𝑀) = (!‘(𝑘 + 1)) → ((!‘𝑀) ≤ (!‘𝑀) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6462, 63syl5ibcom 244 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((!‘𝑀) = (!‘(𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6561, 64syl5 34 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6665adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6766a1dd 50 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6860, 67jaod 855 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1)) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6935, 68sylbid 239 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7069ex 412 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7170com13 88 . . . . . . . 8 (𝑀 ≤ (𝑘 + 1) → (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7271com4l 92 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7372a2d 29 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → (𝑀 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7473imp4a 422 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7529, 74syl5bi 241 . . . 4 (𝑘 ∈ ℕ0 → (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
765, 10, 15, 20, 28, 75nn0ind 12345 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁)))
77763impib 1114 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
78773com12 1121 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  0cn0 12163  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916
This theorem is referenced by:  facavg  13943  aaliou3lem6  25413  factwoffsmonot  40091
  Copyright terms: Public domain W3C validator