MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinopn Structured version   Visualization version   GIF version

Theorem fiinopn 22786
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))

Proof of Theorem fiinopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwg 4554 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
2 sseq1 3961 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
3 neeq1 2987 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
4 eleq1 2816 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
52, 3, 43anbi123d 1438 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)))
6 inteq 4899 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 𝑥 = 𝐴)
76eleq1d 2813 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
87imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐽 ∈ Top → 𝑥𝐽) ↔ (𝐽 ∈ Top → 𝐴𝐽)))
95, 8imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽)) ↔ ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))))
10 sp 2184 . . . . . . . . . . . . . 14 (∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
1110adantl 481 . . . . . . . . . . . . 13 ((∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
12 istop2g 22781 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))))
1312ibi 267 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
1411, 13syl11 33 . . . . . . . . . . . 12 ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽))
159, 14vtoclg 3509 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝐽 → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽)))
1615com12 32 . . . . . . . . . 10 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))
17163exp 1119 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1817com3r 87 . . . . . . . 8 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1918com4r 94 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
201, 19biimtrrdi 254 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽))))))
2120pm2.43a 54 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
2221com4l 92 . . . 4 (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽)))))
2322pm2.43i 52 . . 3 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽))))
24233imp 1110 . 2 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))
2524com12 32 1 (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   cint 4896  Fincfn 8872  Topctop 22778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-2o 8389  df-en 8873  df-fin 8876  df-top 22779
This theorem is referenced by:  iinopn  22787  hauscmplem  23291  1stcfb  23330  txtube  23525
  Copyright terms: Public domain W3C validator