MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinopn Structured version   Visualization version   GIF version

Theorem fiinopn 22050
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))

Proof of Theorem fiinopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwg 4536 . . . . . . 7 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽𝐴𝐽))
2 sseq1 3946 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥𝐽𝐴𝐽))
3 neeq1 3006 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
4 eleq1 2826 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
52, 3, 43anbi123d 1435 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)))
6 inteq 4882 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 𝑥 = 𝐴)
76eleq1d 2823 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝑥𝐽 𝐴𝐽))
87imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((𝐽 ∈ Top → 𝑥𝐽) ↔ (𝐽 ∈ Top → 𝐴𝐽)))
95, 8imbi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽)) ↔ ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))))
10 sp 2176 . . . . . . . . . . . . . 14 (∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
1110adantl 482 . . . . . . . . . . . . 13 ((∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)) → ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))
12 istop2g 22045 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽))))
1312ibi 266 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
1411, 13syl11 33 . . . . . . . . . . . 12 ((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → (𝐽 ∈ Top → 𝑥𝐽))
159, 14vtoclg 3505 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 𝐽 → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽)))
1615com12 32 . . . . . . . . . 10 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))
17163exp 1118 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1817com3r 87 . . . . . . . 8 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ 𝒫 𝐽 → (𝐽 ∈ Top → 𝐴𝐽)))))
1918com4r 94 . . . . . . 7 (𝐴 ∈ 𝒫 𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
201, 19syl6bir 253 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽))))))
2120pm2.43a 54 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐽 ∈ Top → 𝐴𝐽)))))
2221com4l 92 . . . 4 (𝐴𝐽 → (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽)))))
2322pm2.43i 52 . . 3 (𝐴𝐽 → (𝐴 ≠ ∅ → (𝐴 ∈ Fin → (𝐽 ∈ Top → 𝐴𝐽))))
24233imp 1110 . 2 ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝐽 ∈ Top → 𝐴𝐽))
2524com12 32 1 (𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879  Fincfn 8733  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-top 22043
This theorem is referenced by:  iinopn  22051  hauscmplem  22557  1stcfb  22596  txtube  22791
  Copyright terms: Public domain W3C validator