MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   GIF version

Theorem dvcnvrelem1 24004
Description: Lemma for dvcnvre 24006. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
Assertion
Ref Expression
dvcnvrelem1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))

Proof of Theorem dvcnvrelem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
2 dvbsss 23890 . . . . . 6 dom (ℝ D 𝐹) ⊆ ℝ
31, 2syl6eqssr 3864 . . . . 5 (𝜑𝑋 ⊆ ℝ)
4 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
53, 4sseldd 3810 . . . 4 (𝜑𝐶 ∈ ℝ)
6 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
76rpred 12093 . . . 4 (𝜑𝑅 ∈ ℝ)
85, 7resubcld 10750 . . 3 (𝜑 → (𝐶𝑅) ∈ ℝ)
95, 7readdcld 10361 . . 3 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
105, 6ltsubrpd 12125 . . . . 5 (𝜑 → (𝐶𝑅) < 𝐶)
115, 6ltaddrpd 12126 . . . . 5 (𝜑𝐶 < (𝐶 + 𝑅))
128, 5, 9, 10, 11lttrd 10490 . . . 4 (𝜑 → (𝐶𝑅) < (𝐶 + 𝑅))
138, 9, 12ltled 10477 . . 3 (𝜑 → (𝐶𝑅) ≤ (𝐶 + 𝑅))
14 dvcnvre.s . . . 4 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
15 dvcnvre.f . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℝ))
16 rescncf 22921 . . . 4 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
1714, 15, 16sylc 65 . . 3 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
188, 9, 13, 17evthicc2 23451 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
19 cncff 22917 . . . . . . . . 9 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
2015, 19syl 17 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2120, 4ffvelrnd 6589 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℝ)
2221adantr 468 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ℝ)
238rexrd 10381 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ*)
249rexrd 10381 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ*)
25 lbicc2 12515 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2623, 24, 13, 25syl3anc 1483 . . . . . . . . . . 11 (𝜑 → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2726adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
288, 5, 10ltled 10477 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ≤ 𝐶)
295, 9, 11ltled 10477 . . . . . . . . . . . 12 (𝜑𝐶 ≤ (𝐶 + 𝑅))
30 elicc2 12463 . . . . . . . . . . . . 13 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
318, 9, 30syl2anc 575 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
325, 28, 29, 31mpbir3and 1435 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3332adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3410adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) < 𝐶)
35 isorel 6807 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3635biimpd 220 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3736exp32 409 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3837com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3927, 33, 34, 38syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
40 fvres 6434 . . . . . . . . . . 11 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
4127, 40syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
42 fvres 6434 . . . . . . . . . . 11 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4333, 42syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4441, 43breq12d 4868 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4539, 44sylibd 230 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4620adantr 468 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ)
4746ffund 6267 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹)
4814adantr 468 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
4946fdmd 6272 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋)
5048, 49sseqtr4d 3850 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
51 funfvima2 6725 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5247, 50, 51syl2anc 575 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5327, 52mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
54 df-ima 5335 . . . . . . . . . . . . 13 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))
55 simprr 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5654, 55syl5eq 2863 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5753, 56eleqtrd 2898 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦))
58 elicc2 12463 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5958ad2antrl 710 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
6057, 59mpbid 223 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦))
6160simp2d 1166 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶𝑅)))
62 simprll 788 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ)
6314, 26sseldd 3810 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ 𝑋)
6420, 63ffvelrnd 6589 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶𝑅)) ∈ ℝ)
6564adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ ℝ)
66 lelttr 10420 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6762, 65, 22, 66syl3anc 1483 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6861, 67mpand 678 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
6945, 68syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
70 ubicc2 12516 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7123, 24, 13, 70syl3anc 1483 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7271adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7311adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅))
74 isorel 6807 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7574biimpd 220 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7675exp32 409 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7776com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7833, 72, 73, 77syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
79 fvex 6428 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V
80 fvex 6428 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V
8179, 80brcnv 5517 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶))
82 fvres 6434 . . . . . . . . . . . 12 ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8372, 82syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8483, 43breq12d 4868 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8581, 84syl5bb 274 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8678, 85sylibd 230 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
87 funfvima2 6725 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8847, 50, 87syl2anc 575 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8972, 88mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
9089, 56eleqtrd 2898 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦))
91 elicc2 12463 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9291ad2antrl 710 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9390, 92mpbid 223 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))
9493simp2d 1166 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)))
9514, 71sseldd 3810 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ 𝑋)
9620, 95ffvelrnd 6589 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
9796adantr 468 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
98 lelttr 10420 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9962, 97, 22, 98syl3anc 1483 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
10094, 99mpand 678 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
10186, 100syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
102 ax-resscn 10285 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
103102a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
104 fss 6276 . . . . . . . . . . . . . 14 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
10520, 102, 104sylancl 576 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℂ)
10614, 3sstrd 3819 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
107 eqid 2817 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
108107tgioo2 22827 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
109107, 108dvres 23899 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
110103, 105, 3, 106, 109syl22anc 858 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
111 iccntr 22845 . . . . . . . . . . . . . 14 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
1128, 9, 111syl2anc 575 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
113112reseq2d 5608 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
114110, 113eqtrd 2851 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
115114dmeqd 5538 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
116 dmres 5633 . . . . . . . . . . 11 dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹))
117 ioossicc 12484 . . . . . . . . . . . . . 14 ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶𝑅)[,](𝐶 + 𝑅))
118117, 14syl5ss 3820 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋)
119118, 1sseqtr4d 3850 . . . . . . . . . . . 12 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹))
120 df-ss 3794 . . . . . . . . . . . 12 (((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
121119, 120sylib 209 . . . . . . . . . . 11 (𝜑 → (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
122116, 121syl5eq 2863 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
123115, 122eqtrd 2851 . . . . . . . . 9 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
124 resss 5636 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹)
125114, 124syl6eqss 3863 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹))
126 rnss 5566 . . . . . . . . . . 11 ((ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
127125, 126syl 17 . . . . . . . . . 10 (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
128 dvcnvre.z . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
129127, 128ssneldd 3812 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
1308, 9, 17, 123, 129dvne0 23998 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
131130adantr 468 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
13269, 101, 131mpjaod 878 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹𝐶))
133 isorel 6807 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
134133biimpd 220 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
135134exp32 409 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
136135com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
13733, 72, 73, 136syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
13843, 83breq12d 4868 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
139137, 138sylibd 230 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
14093simp3d 1167 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)
141 simprlr 789 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ)
142 ltletr 10421 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
14322, 97, 141, 142syl3anc 1483 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
144140, 143mpan2d 677 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹𝐶) < 𝑦))
145139, 144syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
146 isorel 6807 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
147146biimpd 220 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
148147exp32 409 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
149148com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
15027, 33, 34, 149syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
151 fvex 6428 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ∈ V
152151, 79brcnv 5517 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)))
15343, 41breq12d 4868 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
154152, 153syl5bb 274 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
155150, 154sylibd 230 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
15660simp3d 1167 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ≤ 𝑦)
157 ltletr 10421 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
15822, 65, 141, 157syl3anc 1483 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
159156, 158mpan2d 677 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶𝑅)) → (𝐹𝐶) < 𝑦))
160155, 159syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
161145, 160, 131mpjaod 878 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) < 𝑦)
16262rexrd 10381 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*)
163141rexrd 10381 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*)
164 elioo2 12441 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
165162, 163, 164syl2anc 575 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
16622, 132, 161, 165mpbir3and 1435 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ (𝑥(,)𝑦))
16756fveq2d 6419 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)))
168 iccntr 22845 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
169168ad2antrl 710 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
170167, 169eqtrd 2851 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦))
171166, 170eleqtrrd 2899 . . . 4 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
172171expr 446 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
173172rexlimdvva 3237 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
17418, 173mpd 15 1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2157  wrex 3108  cin 3779  wss 3780   class class class wbr 4855  ccnv 5321  dom cdm 5322  ran crn 5323  cres 5324  cima 5325  Fun wfun 6102  wf 6104  1-1-ontowf1o 6107  cfv 6108   Isom wiso 6109  (class class class)co 6881  cc 10226  cr 10227  0cc0 10228   + caddc 10231  *cxr 10365   < clt 10366  cle 10367  cmin 10558  +crp 12053  (,)cioo 12400  [,]cicc 12403  TopOpenctopn 16294  topGenctg 16310  fldccnfld 19961  intcnt 21043  cnccncf 22900   D cdv 23851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-inf2 8792  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306  ax-addf 10307  ax-mulf 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-of 7134  df-om 7303  df-1st 7405  df-2nd 7406  df-supp 7537  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-er 7986  df-map 8101  df-pm 8102  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fsupp 8522  df-fi 8563  df-sup 8594  df-inf 8595  df-oi 8661  df-card 9055  df-cda 9282  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-div 10977  df-nn 11313  df-2 11371  df-3 11372  df-4 11373  df-5 11374  df-6 11375  df-7 11376  df-8 11377  df-9 11378  df-n0 11567  df-z 11651  df-dec 11767  df-uz 11912  df-q 12015  df-rp 12054  df-xneg 12169  df-xadd 12170  df-xmul 12171  df-ioo 12404  df-ico 12406  df-icc 12407  df-fz 12557  df-fzo 12697  df-seq 13032  df-exp 13091  df-hash 13345  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-struct 16077  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-mulr 16174  df-starv 16175  df-sca 16176  df-vsca 16177  df-ip 16178  df-tset 16179  df-ple 16180  df-ds 16182  df-unif 16183  df-hom 16184  df-cco 16185  df-rest 16295  df-topn 16296  df-0g 16314  df-gsum 16315  df-topgen 16316  df-pt 16317  df-prds 16320  df-xrs 16374  df-qtop 16379  df-imas 16380  df-xps 16382  df-mre 16458  df-mrc 16459  df-acs 16461  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-submnd 17548  df-mulg 17753  df-cntz 17958  df-cmn 18403  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23854  df-dv 23855
This theorem is referenced by:  dvcnvrelem2  24005
  Copyright terms: Public domain W3C validator