| Step | Hyp | Ref
| Expression |
| 1 | | dvcnvre.d |
. . . . . 6
⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) |
| 2 | | dvbsss 25937 |
. . . . . 6
⊢ dom
(ℝ D 𝐹) ⊆
ℝ |
| 3 | 1, 2 | eqsstrrdi 4029 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| 4 | | dvcnvre.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 5 | 3, 4 | sseldd 3984 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | | dvcnvre.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 7 | 6 | rpred 13077 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 8 | 5, 7 | resubcld 11691 |
. . 3
⊢ (𝜑 → (𝐶 − 𝑅) ∈ ℝ) |
| 9 | 5, 7 | readdcld 11290 |
. . 3
⊢ (𝜑 → (𝐶 + 𝑅) ∈ ℝ) |
| 10 | 5, 6 | ltsubrpd 13109 |
. . . . 5
⊢ (𝜑 → (𝐶 − 𝑅) < 𝐶) |
| 11 | 5, 6 | ltaddrpd 13110 |
. . . . 5
⊢ (𝜑 → 𝐶 < (𝐶 + 𝑅)) |
| 12 | 8, 5, 9, 10, 11 | lttrd 11422 |
. . . 4
⊢ (𝜑 → (𝐶 − 𝑅) < (𝐶 + 𝑅)) |
| 13 | 8, 9, 12 | ltled 11409 |
. . 3
⊢ (𝜑 → (𝐶 − 𝑅) ≤ (𝐶 + 𝑅)) |
| 14 | | dvcnvre.s |
. . . 4
⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) |
| 15 | | dvcnvre.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) |
| 16 | | rescncf 24923 |
. . . 4
⊢ (((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋–cn→ℝ) → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→ℝ))) |
| 17 | 14, 15, 16 | sylc 65 |
. . 3
⊢ (𝜑 → (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶 − 𝑅)[,](𝐶 + 𝑅))–cn→ℝ)) |
| 18 | 8, 9, 13, 17 | evthicc2 25495 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦)) |
| 19 | | cncff 24919 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑋–cn→ℝ) → 𝐹:𝑋⟶ℝ) |
| 20 | 15, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 21 | 20, 4 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℝ) |
| 22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘𝐶) ∈ ℝ) |
| 23 | 8 | rexrd 11311 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 − 𝑅) ∈
ℝ*) |
| 24 | 9 | rexrd 11311 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 + 𝑅) ∈
ℝ*) |
| 25 | | lbicc2 13504 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶 − 𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 26 | 23, 24, 13, 25 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 28 | 8, 5, 10 | ltled 11409 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 − 𝑅) ≤ 𝐶) |
| 29 | 5, 9, 11 | ltled 11409 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ≤ (𝐶 + 𝑅)) |
| 30 | | elicc2 13452 |
. . . . . . . . . . . . 13
⊢ (((𝐶 − 𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶 − 𝑅) ≤ 𝐶 ∧ 𝐶 ≤ (𝐶 + 𝑅)))) |
| 31 | 8, 9, 30 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶 − 𝑅) ≤ 𝐶 ∧ 𝐶 ≤ (𝐶 + 𝑅)))) |
| 32 | 5, 28, 29, 31 | mpbir3and 1343 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 33 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 34 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 − 𝑅) < 𝐶) |
| 35 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 36 | 35 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 37 | 36 | exp32 420 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))))) |
| 38 | 37 | com4l 92 |
. . . . . . . . . 10
⊢ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))))) |
| 39 | 27, 33, 34, 38 | syl3c 66 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 40 | 27 | fvresd 6926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) = (𝐹‘(𝐶 − 𝑅))) |
| 41 | 33 | fvresd 6926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹‘𝐶)) |
| 42 | 40, 41 | breq12d 5156 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 − 𝑅)) < (𝐹‘𝐶))) |
| 43 | 39, 42 | sylibd 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 − 𝑅)) < (𝐹‘𝐶))) |
| 44 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ) |
| 45 | 44 | ffund 6740 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹) |
| 46 | 14 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) |
| 47 | 44 | fdmd 6746 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋) |
| 48 | 46, 47 | sseqtrrd 4021 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) |
| 49 | | funfvima2 7251 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 − 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 50 | 45, 48, 49 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 − 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 51 | 27, 50 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 − 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 52 | | df-ima 5698 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 53 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦)) |
| 54 | 52, 53 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦)) |
| 55 | 51, 54 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 − 𝑅)) ∈ (𝑥[,]𝑦)) |
| 56 | | elicc2 13452 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 − 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 − 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦))) |
| 57 | 56 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 − 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 − 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦))) |
| 58 | 55, 57 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 − 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦)) |
| 59 | 58 | simp2d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 − 𝑅))) |
| 60 | | simprll 779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ) |
| 61 | 14, 26 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 − 𝑅) ∈ 𝑋) |
| 62 | 20, 61 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘(𝐶 − 𝑅)) ∈ ℝ) |
| 63 | 62 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 − 𝑅)) ∈ ℝ) |
| 64 | | lelttr 11351 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 − 𝑅)) ∈ ℝ ∧ (𝐹‘𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) < (𝐹‘𝐶)) → 𝑥 < (𝐹‘𝐶))) |
| 65 | 60, 63, 22, 64 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) < (𝐹‘𝐶)) → 𝑥 < (𝐹‘𝐶))) |
| 66 | 59, 65 | mpand 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 − 𝑅)) < (𝐹‘𝐶) → 𝑥 < (𝐹‘𝐶))) |
| 67 | 43, 66 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹‘𝐶))) |
| 68 | | ubicc2 13505 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶 − 𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 69 | 23, 24, 13, 68 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 70 | 69 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) |
| 71 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅)) |
| 72 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 73 | 72 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 74 | 73 | exp32 420 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))))) |
| 75 | 74 | com4l 92 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))))) |
| 76 | 33, 70, 71, 75 | syl3c 66 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 77 | | fvex 6919 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V |
| 78 | | fvex 6919 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V |
| 79 | 77, 78 | brcnv 5893 |
. . . . . . . . . 10
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)) |
| 80 | 70 | fvresd 6926 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅))) |
| 81 | 80, 41 | breq12d 5156 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶))) |
| 82 | 79, 81 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶)◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶))) |
| 83 | 76, 82 | sylibd 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶))) |
| 84 | | funfvima2 7251 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 85 | 45, 48, 84 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 86 | 70, 85 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) |
| 87 | 86, 54 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦)) |
| 88 | | elicc2 13452 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))) |
| 89 | 88 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))) |
| 90 | 87, 89 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)) |
| 91 | 90 | simp2d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅))) |
| 92 | 14, 69 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 + 𝑅) ∈ 𝑋) |
| 93 | 20, 92 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ) |
| 94 | 93 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ) |
| 95 | | lelttr 11351 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹‘𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶)) → 𝑥 < (𝐹‘𝐶))) |
| 96 | 60, 94, 22, 95 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶)) → 𝑥 < (𝐹‘𝐶))) |
| 97 | 91, 96 | mpand 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹‘𝐶) → 𝑥 < (𝐹‘𝐶))) |
| 98 | 83, 97 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹‘𝐶))) |
| 99 | | ax-resscn 11212 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
| 100 | 99 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 101 | | fss 6752 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝑋⟶ℂ) |
| 102 | 20, 99, 101 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 103 | 14, 3 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ) |
| 104 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 105 | | tgioo4 24826 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 106 | 104, 105 | dvres 25946 |
. . . . . . . . . . . . 13
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D
(𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝐶 −
𝑅)[,](𝐶 + 𝑅))))) |
| 107 | 100, 102,
3, 103, 106 | syl22anc 839 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝐶 −
𝑅)[,](𝐶 + 𝑅))))) |
| 108 | | iccntr 24843 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 − 𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) →
((int‘(topGen‘ran (,)))‘((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 109 | 8, 9, 108 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 110 | 109 | reseq2d 5997 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)))) |
| 111 | 107, 110 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)))) |
| 112 | 111 | dmeqd 5916 |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)))) |
| 113 | | dmres 6030 |
. . . . . . . . . . 11
⊢ dom
((ℝ D 𝐹) ↾
((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) = (((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) |
| 114 | | ioossicc 13473 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) |
| 115 | 114, 14 | sstrid 3995 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋) |
| 116 | 115, 1 | sseqtrrd 4021 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹)) |
| 117 | | dfss2 3969 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 118 | 116, 117 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐶 − 𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 119 | 113, 118 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 120 | 112, 119 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) |
| 121 | | resss 6019 |
. . . . . . . . . . . 12
⊢ ((ℝ
D 𝐹) ↾ ((𝐶 − 𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹) |
| 122 | 111, 121 | eqsstrdi 4028 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹)) |
| 123 | | rnss 5950 |
. . . . . . . . . . 11
⊢ ((ℝ
D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹)) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹)) |
| 125 | | dvcnvre.z |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐹)) |
| 126 | 124, 125 | ssneldd 3986 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D (𝐹 ↾
((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 127 | 8, 9, 17, 120, 126 | dvne0 26050 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))))) |
| 128 | 127 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))))) |
| 129 | 67, 98, 128 | mpjaod 861 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹‘𝐶)) |
| 130 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 131 | 130 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 132 | 131 | exp32 420 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))))) |
| 133 | 132 | com4l 92 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))))) |
| 134 | 33, 70, 71, 133 | syl3c 66 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)))) |
| 135 | 41, 80 | breq12d 5156 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘𝐶) < (𝐹‘(𝐶 + 𝑅)))) |
| 136 | 134, 135 | sylibd 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘𝐶) < (𝐹‘(𝐶 + 𝑅)))) |
| 137 | 90 | simp3d 1145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) |
| 138 | | simprlr 780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ) |
| 139 | | ltletr 11353 |
. . . . . . . . . 10
⊢ (((𝐹‘𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹‘𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹‘𝐶) < 𝑦)) |
| 140 | 22, 94, 138, 139 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹‘𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹‘𝐶) < 𝑦)) |
| 141 | 137, 140 | mpan2d 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹‘𝐶) < 𝑦)) |
| 142 | 136, 141 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘𝐶) < 𝑦)) |
| 143 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 144 | 143 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 145 | 144 | exp32 420 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))))) |
| 146 | 145 | com4l 92 |
. . . . . . . . . 10
⊢ ((𝐶 − 𝑅) ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) → ((𝐶 − 𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))))) |
| 147 | 27, 33, 34, 146 | syl3c 66 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶))) |
| 148 | | fvex 6919 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) ∈ V |
| 149 | 148, 77 | brcnv 5893 |
. . . . . . . . . 10
⊢ (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))) |
| 150 | 41, 40 | breq12d 5156 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅)) ↔ (𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)))) |
| 151 | 149, 150 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘(𝐶 − 𝑅))◡
< ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)))) |
| 152 | 147, 151 | sylibd 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)))) |
| 153 | 58 | simp3d 1145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦) |
| 154 | | ltletr 11353 |
. . . . . . . . . 10
⊢ (((𝐹‘𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 − 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦) → (𝐹‘𝐶) < 𝑦)) |
| 155 | 22, 63, 138, 154 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)) ∧ (𝐹‘(𝐶 − 𝑅)) ≤ 𝑦) → (𝐹‘𝐶) < 𝑦)) |
| 156 | 153, 155 | mpan2d 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘𝐶) < (𝐹‘(𝐶 − 𝑅)) → (𝐹‘𝐶) < 𝑦)) |
| 157 | 152, 156 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) Isom < , ◡ < (((𝐶 − 𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘𝐶) < 𝑦)) |
| 158 | 142, 157,
128 | mpjaod 861 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘𝐶) < 𝑦) |
| 159 | 60 | rexrd 11311 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*) |
| 160 | 138 | rexrd 11311 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*) |
| 161 | | elioo2 13428 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ((𝐹‘𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹‘𝐶) ∈ ℝ ∧ 𝑥 < (𝐹‘𝐶) ∧ (𝐹‘𝐶) < 𝑦))) |
| 162 | 159, 160,
161 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹‘𝐶) ∈ ℝ ∧ 𝑥 < (𝐹‘𝐶) ∧ (𝐹‘𝐶) < 𝑦))) |
| 163 | 22, 129, 158, 162 | mpbir3and 1343 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘𝐶) ∈ (𝑥(,)𝑦)) |
| 164 | 54 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran
(,)))‘(𝑥[,]𝑦))) |
| 165 | | iccntr 24843 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦)) |
| 166 | 165 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran
(,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦)) |
| 167 | 164, 166 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦)) |
| 168 | 163, 167 | eleqtrrd 2844 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |
| 169 | 168 | expr 456 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅)))))) |
| 170 | 169 | rexlimdvva 3213 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅)))))) |
| 171 | 18, 170 | mpd 15 |
1
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran
(,)))‘(𝐹 “
((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) |