MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   GIF version

Theorem dvcnvrelem1 25974
Description: Lemma for dvcnvre 25976. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
Assertion
Ref Expression
dvcnvrelem1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))

Proof of Theorem dvcnvrelem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
2 dvbsss 25855 . . . . . 6 dom (ℝ D 𝐹) ⊆ ℝ
31, 2eqsstrrdi 4004 . . . . 5 (𝜑𝑋 ⊆ ℝ)
4 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
53, 4sseldd 3959 . . . 4 (𝜑𝐶 ∈ ℝ)
6 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
76rpred 13051 . . . 4 (𝜑𝑅 ∈ ℝ)
85, 7resubcld 11665 . . 3 (𝜑 → (𝐶𝑅) ∈ ℝ)
95, 7readdcld 11264 . . 3 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
105, 6ltsubrpd 13083 . . . . 5 (𝜑 → (𝐶𝑅) < 𝐶)
115, 6ltaddrpd 13084 . . . . 5 (𝜑𝐶 < (𝐶 + 𝑅))
128, 5, 9, 10, 11lttrd 11396 . . . 4 (𝜑 → (𝐶𝑅) < (𝐶 + 𝑅))
138, 9, 12ltled 11383 . . 3 (𝜑 → (𝐶𝑅) ≤ (𝐶 + 𝑅))
14 dvcnvre.s . . . 4 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
15 dvcnvre.f . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℝ))
16 rescncf 24841 . . . 4 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
1714, 15, 16sylc 65 . . 3 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
188, 9, 13, 17evthicc2 25413 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
19 cncff 24837 . . . . . . . . 9 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
2015, 19syl 17 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2120, 4ffvelcdmd 7075 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℝ)
2221adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ℝ)
238rexrd 11285 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ*)
249rexrd 11285 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ*)
25 lbicc2 13481 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2623, 24, 13, 25syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2726adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
288, 5, 10ltled 11383 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ≤ 𝐶)
295, 9, 11ltled 11383 . . . . . . . . . . . 12 (𝜑𝐶 ≤ (𝐶 + 𝑅))
30 elicc2 13428 . . . . . . . . . . . . 13 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
318, 9, 30syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
325, 28, 29, 31mpbir3and 1343 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3410adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) < 𝐶)
35 isorel 7319 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3635biimpd 229 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3736exp32 420 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3837com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3927, 33, 34, 38syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
4027fvresd 6896 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
4133fvresd 6896 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4240, 41breq12d 5132 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4339, 42sylibd 239 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4420adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ)
4544ffund 6710 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹)
4614adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
4744fdmd 6716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋)
4846, 47sseqtrrd 3996 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
49 funfvima2 7223 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5045, 48, 49syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5127, 50mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
52 df-ima 5667 . . . . . . . . . . . . 13 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))
53 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5452, 53eqtrid 2782 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5551, 54eleqtrd 2836 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦))
56 elicc2 13428 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5756ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5855, 57mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦))
5958simp2d 1143 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶𝑅)))
60 simprll 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ)
6114, 26sseldd 3959 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ 𝑋)
6220, 61ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶𝑅)) ∈ ℝ)
6362adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ ℝ)
64 lelttr 11325 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6560, 63, 22, 64syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6659, 65mpand 695 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
6743, 66syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
68 ubicc2 13482 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
6923, 24, 13, 68syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7069adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7111adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅))
72 isorel 7319 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7372biimpd 229 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7473exp32 420 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7574com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7633, 70, 71, 75syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
77 fvex 6889 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V
78 fvex 6889 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V
7977, 78brcnv 5862 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶))
8070fvresd 6896 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8180, 41breq12d 5132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8279, 81bitrid 283 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8376, 82sylibd 239 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
84 funfvima2 7223 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8545, 48, 84syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8670, 85mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
8786, 54eleqtrd 2836 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦))
88 elicc2 13428 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
8988ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9087, 89mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))
9190simp2d 1143 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)))
9214, 69sseldd 3959 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ 𝑋)
9320, 92ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
9493adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
95 lelttr 11325 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9660, 94, 22, 95syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9791, 96mpand 695 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
9883, 97syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
99 ax-resscn 11186 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
10099a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
101 fss 6722 . . . . . . . . . . . . . 14 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
10220, 99, 101sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℂ)
10314, 3sstrd 3969 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
104 eqid 2735 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
105 tgioo4 24744 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106104, 105dvres 25864 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
107100, 102, 3, 103, 106syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
108 iccntr 24761 . . . . . . . . . . . . . 14 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
1098, 9, 108syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
110109reseq2d 5966 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
111107, 110eqtrd 2770 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
112111dmeqd 5885 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
113 dmres 5999 . . . . . . . . . . 11 dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹))
114 ioossicc 13450 . . . . . . . . . . . . . 14 ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶𝑅)[,](𝐶 + 𝑅))
115114, 14sstrid 3970 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋)
116115, 1sseqtrrd 3996 . . . . . . . . . . . 12 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹))
117 dfss2 3944 . . . . . . . . . . . 12 (((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
118116, 117sylib 218 . . . . . . . . . . 11 (𝜑 → (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
119113, 118eqtrid 2782 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
120112, 119eqtrd 2770 . . . . . . . . 9 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
121 resss 5988 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹)
122111, 121eqsstrdi 4003 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹))
123 rnss 5919 . . . . . . . . . . 11 ((ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
125 dvcnvre.z . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
126124, 125ssneldd 3961 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
1278, 9, 17, 120, 126dvne0 25968 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
128127adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
12967, 98, 128mpjaod 860 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹𝐶))
130 isorel 7319 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
131130biimpd 229 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
132131exp32 420 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
133132com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
13433, 70, 71, 133syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
13541, 80breq12d 5132 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
136134, 135sylibd 239 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
13790simp3d 1144 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)
138 simprlr 779 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ)
139 ltletr 11327 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
14022, 94, 138, 139syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
141137, 140mpan2d 694 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹𝐶) < 𝑦))
142136, 141syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
143 isorel 7319 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
144143biimpd 229 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
145144exp32 420 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
146145com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
14727, 33, 34, 146syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
148 fvex 6889 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ∈ V
149148, 77brcnv 5862 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)))
15041, 40breq12d 5132 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
151149, 150bitrid 283 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
152147, 151sylibd 239 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
15358simp3d 1144 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ≤ 𝑦)
154 ltletr 11327 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
15522, 63, 138, 154syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
156153, 155mpan2d 694 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶𝑅)) → (𝐹𝐶) < 𝑦))
157152, 156syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
158142, 157, 128mpjaod 860 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) < 𝑦)
15960rexrd 11285 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*)
160138rexrd 11285 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*)
161 elioo2 13403 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
162159, 160, 161syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
16322, 129, 158, 162mpbir3and 1343 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ (𝑥(,)𝑦))
16454fveq2d 6880 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)))
165 iccntr 24761 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
166165ad2antrl 728 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
167164, 166eqtrd 2770 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦))
168163, 167eleqtrrd 2837 . . . 4 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
169168expr 456 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
170169rexlimdvva 3198 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
17118, 170mpd 15 1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  cin 3925  wss 3926   class class class wbr 5119  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525  wf 6527  1-1-ontowf1o 6530  cfv 6531   Isom wiso 6532  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cmin 11466  +crp 13008  (,)cioo 13362  [,]cicc 13365  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  intcnt 22955  cnccncf 24820   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  dvcnvrelem2  25975
  Copyright terms: Public domain W3C validator