MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   GIF version

Theorem dvcnvrelem1 25381
Description: Lemma for dvcnvre 25383. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
dvcnvre.c (𝜑𝐶𝑋)
dvcnvre.r (𝜑𝑅 ∈ ℝ+)
dvcnvre.s (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
Assertion
Ref Expression
dvcnvrelem1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))

Proof of Theorem dvcnvrelem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
2 dvbsss 25266 . . . . . 6 dom (ℝ D 𝐹) ⊆ ℝ
31, 2eqsstrrdi 3999 . . . . 5 (𝜑𝑋 ⊆ ℝ)
4 dvcnvre.c . . . . 5 (𝜑𝐶𝑋)
53, 4sseldd 3945 . . . 4 (𝜑𝐶 ∈ ℝ)
6 dvcnvre.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
76rpred 12957 . . . 4 (𝜑𝑅 ∈ ℝ)
85, 7resubcld 11583 . . 3 (𝜑 → (𝐶𝑅) ∈ ℝ)
95, 7readdcld 11184 . . 3 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
105, 6ltsubrpd 12989 . . . . 5 (𝜑 → (𝐶𝑅) < 𝐶)
115, 6ltaddrpd 12990 . . . . 5 (𝜑𝐶 < (𝐶 + 𝑅))
128, 5, 9, 10, 11lttrd 11316 . . . 4 (𝜑 → (𝐶𝑅) < (𝐶 + 𝑅))
138, 9, 12ltled 11303 . . 3 (𝜑 → (𝐶𝑅) ≤ (𝐶 + 𝑅))
14 dvcnvre.s . . . 4 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
15 dvcnvre.f . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℝ))
16 rescncf 24260 . . . 4 (((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋 → (𝐹 ∈ (𝑋cn→ℝ) → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ)))
1714, 15, 16sylc 65 . . 3 (𝜑 → (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) ∈ (((𝐶𝑅)[,](𝐶 + 𝑅))–cn→ℝ))
188, 9, 13, 17evthicc2 24824 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
19 cncff 24256 . . . . . . . . 9 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
2015, 19syl 17 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2120, 4ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ ℝ)
2221adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ℝ)
238rexrd 11205 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ ℝ*)
249rexrd 11205 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ ℝ*)
25 lbicc2 13381 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2623, 24, 13, 25syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
2726adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
288, 5, 10ltled 11303 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ≤ 𝐶)
295, 9, 11ltled 11303 . . . . . . . . . . . 12 (𝜑𝐶 ≤ (𝐶 + 𝑅))
30 elicc2 13329 . . . . . . . . . . . . 13 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
318, 9, 30syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ↔ (𝐶 ∈ ℝ ∧ (𝐶𝑅) ≤ 𝐶𝐶 ≤ (𝐶 + 𝑅))))
325, 28, 29, 31mpbir3and 1342 . . . . . . . . . . 11 (𝜑𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3332adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
3410adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶𝑅) < 𝐶)
35 isorel 7271 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3635biimpd 228 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
3736exp32 421 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3837com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
3927, 33, 34, 38syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
4027fvresd 6862 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) = (𝐹‘(𝐶𝑅)))
4133fvresd 6862 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) = (𝐹𝐶))
4240, 41breq12d 5118 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4339, 42sylibd 238 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶𝑅)) < (𝐹𝐶)))
4420adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐹:𝑋⟶ℝ)
4544ffund 6672 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → Fun 𝐹)
4614adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋)
4744fdmd 6679 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → dom 𝐹 = 𝑋)
4846, 47sseqtrrd 3985 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹)
49 funfvima2 7181 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5045, 48, 49syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
5127, 50mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
52 df-ima 5646 . . . . . . . . . . . . 13 (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))
53 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5452, 53eqtrid 2788 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))
5551, 54eleqtrd 2840 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦))
56 elicc2 13329 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5756ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦)))
5855, 57mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦))
5958simp2d 1143 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶𝑅)))
60 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ)
6114, 26sseldd 3945 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑅) ∈ 𝑋)
6220, 61ffvelcdmd 7036 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶𝑅)) ∈ ℝ)
6362adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ∈ ℝ)
64 lelttr 11245 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6560, 63, 22, 64syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
6659, 65mpand 693 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
6743, 66syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
68 ubicc2 13382 . . . . . . . . . . . 12 (((𝐶𝑅) ∈ ℝ* ∧ (𝐶 + 𝑅) ∈ ℝ* ∧ (𝐶𝑅) ≤ (𝐶 + 𝑅)) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
6923, 24, 13, 68syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7069adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))
7111adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝐶 < (𝐶 + 𝑅))
72 isorel 7271 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7372biimpd 228 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
7473exp32 421 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7574com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
7633, 70, 71, 75syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
77 fvex 6855 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ∈ V
78 fvex 6855 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ∈ V
7977, 78brcnv 5838 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶))
8070fvresd 6862 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) = (𝐹‘(𝐶 + 𝑅)))
8180, 41breq12d 5118 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8279, 81bitrid 282 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
8376, 82sylibd 238 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)))
84 funfvima2 7181 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ dom 𝐹) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8545, 48, 84syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
8670, 85mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))
8786, 54eleqtrd 2840 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦))
88 elicc2 13329 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
8988ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ (𝑥[,]𝑦) ↔ ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)))
9087, 89mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦))
9190simp2d 1143 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ≤ (𝐹‘(𝐶 + 𝑅)))
9214, 69sseldd 3945 . . . . . . . . . . . 12 (𝜑 → (𝐶 + 𝑅) ∈ 𝑋)
9320, 92ffvelcdmd 7036 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
9493adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ∈ ℝ)
95 lelttr 11245 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9660, 94, 22, 95syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝑥 ≤ (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶)) → 𝑥 < (𝐹𝐶)))
9791, 96mpand 693 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹‘(𝐶 + 𝑅)) < (𝐹𝐶) → 𝑥 < (𝐹𝐶)))
9883, 97syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → 𝑥 < (𝐹𝐶)))
99 ax-resscn 11108 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
10099a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
101 fss 6685 . . . . . . . . . . . . . 14 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
10220, 99, 101sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℂ)
10314, 3sstrd 3954 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)
104 eqid 2736 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
105104tgioo2 24166 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106104, 105dvres 25275 . . . . . . . . . . . . 13 (((ℝ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℝ ∧ ((𝐶𝑅)[,](𝐶 + 𝑅)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
107100, 102, 3, 103, 106syl22anc 837 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))))
108 iccntr 24184 . . . . . . . . . . . . . 14 (((𝐶𝑅) ∈ ℝ ∧ (𝐶 + 𝑅) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
1098, 9, 108syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
110109reseq2d 5937 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
111107, 110eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
112111dmeqd 5861 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))))
113 dmres 5959 . . . . . . . . . . 11 dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹))
114 ioossicc 13350 . . . . . . . . . . . . . 14 ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ ((𝐶𝑅)[,](𝐶 + 𝑅))
115114, 14sstrid 3955 . . . . . . . . . . . . 13 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ 𝑋)
116115, 1sseqtrrd 3985 . . . . . . . . . . . 12 (𝜑 → ((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹))
117 df-ss 3927 . . . . . . . . . . . 12 (((𝐶𝑅)(,)(𝐶 + 𝑅)) ⊆ dom (ℝ D 𝐹) ↔ (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
118116, 117sylib 217 . . . . . . . . . . 11 (𝜑 → (((𝐶𝑅)(,)(𝐶 + 𝑅)) ∩ dom (ℝ D 𝐹)) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
119113, 118eqtrid 2788 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
120112, 119eqtrd 2776 . . . . . . . . 9 (𝜑 → dom (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((𝐶𝑅)(,)(𝐶 + 𝑅)))
121 resss 5962 . . . . . . . . . . . 12 ((ℝ D 𝐹) ↾ ((𝐶𝑅)(,)(𝐶 + 𝑅))) ⊆ (ℝ D 𝐹)
122111, 121eqsstrdi 3998 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹))
123 rnss 5894 . . . . . . . . . . 11 ((ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ (ℝ D 𝐹) → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
124122, 123syl 17 . . . . . . . . . 10 (𝜑 → ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ⊆ ran (ℝ D 𝐹))
125 dvcnvre.z . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
126124, 125ssneldd 3947 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
1278, 9, 17, 120, 126dvne0 25375 . . . . . . . 8 (𝜑 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
128127adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∨ (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
12967, 98, 128mpjaod 858 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 < (𝐹𝐶))
130 isorel 7271 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
131130biimpd 228 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ (𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
132131exp32 421 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
133132com4l 92 . . . . . . . . . 10 (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶 + 𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 < (𝐶 + 𝑅) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))))
13433, 70, 71, 133syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅))))
13541, 80breq12d 5118 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶 + 𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
136134, 135sylibd 238 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶 + 𝑅))))
13790simp3d 1144 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦)
138 simprlr 778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ)
139 ltletr 11247 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶 + 𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
14022, 94, 138, 139syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) ∧ (𝐹‘(𝐶 + 𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
141137, 140mpan2d 692 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶 + 𝑅)) → (𝐹𝐶) < 𝑦))
142136, 141syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
143 isorel 7271 . . . . . . . . . . . . 13 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
144143biimpd 228 . . . . . . . . . . . 12 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) ∧ ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) ∧ 𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
145144exp32 421 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
146145com4l 92 . . . . . . . . . 10 ((𝐶𝑅) ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → (𝐶 ∈ ((𝐶𝑅)[,](𝐶 + 𝑅)) → ((𝐶𝑅) < 𝐶 → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))))
14727, 33, 34, 146syl3c 66 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶)))
148 fvex 6855 . . . . . . . . . . 11 ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ∈ V
149148, 77brcnv 5838 . . . . . . . . . 10 (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)))
15041, 40breq12d 5118 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
151149, 150bitrid 282 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘(𝐶𝑅)) < ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))‘𝐶) ↔ (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
152147, 151sylibd 238 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < (𝐹‘(𝐶𝑅))))
15358simp3d 1144 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹‘(𝐶𝑅)) ≤ 𝑦)
154 ltletr 11247 . . . . . . . . . 10 (((𝐹𝐶) ∈ ℝ ∧ (𝐹‘(𝐶𝑅)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
15522, 63, 138, 154syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (((𝐹𝐶) < (𝐹‘(𝐶𝑅)) ∧ (𝐹‘(𝐶𝑅)) ≤ 𝑦) → (𝐹𝐶) < 𝑦))
156153, 155mpan2d 692 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) < (𝐹‘(𝐶𝑅)) → (𝐹𝐶) < 𝑦))
157152, 156syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) Isom < , < (((𝐶𝑅)[,](𝐶 + 𝑅)), ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅)))) → (𝐹𝐶) < 𝑦))
158142, 157, 128mpjaod 858 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) < 𝑦)
15960rexrd 11205 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑥 ∈ ℝ*)
160138rexrd 11205 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → 𝑦 ∈ ℝ*)
161 elioo2 13305 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
162159, 160, 161syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((𝐹𝐶) ∈ (𝑥(,)𝑦) ↔ ((𝐹𝐶) ∈ ℝ ∧ 𝑥 < (𝐹𝐶) ∧ (𝐹𝐶) < 𝑦)))
16322, 129, 158, 162mpbir3and 1342 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ (𝑥(,)𝑦))
16454fveq2d 6846 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)))
165 iccntr 24184 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
166165ad2antrl 726 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
167164, 166eqtrd 2776 . . . . 5 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))) = (𝑥(,)𝑦))
168163, 167eleqtrrd 2841 . . . 4 ((𝜑 ∧ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦))) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
169168expr 457 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
170169rexlimdvva 3205 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran (𝐹 ↾ ((𝐶𝑅)[,](𝐶 + 𝑅))) = (𝑥[,]𝑦) → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅))))))
17118, 170mpd 15 1 (𝜑 → (𝐹𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶𝑅)[,](𝐶 + 𝑅)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cin 3909  wss 3910   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490  wf 6492  1-1-ontowf1o 6495  cfv 6496   Isom wiso 6497  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385  +crp 12915  (,)cioo 13264  [,]cicc 13267  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvcnvrelem2  25382
  Copyright terms: Public domain W3C validator