| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rabexg 5337 | . . . . . . 7
⊢ (𝐽 ∈ Top → {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ V) | 
| 2 | 1 | ad2antrr 726 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ V) | 
| 3 |  | ssrab2 4080 | . . . . . . 7
⊢ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ⊆ 𝐽 | 
| 4 |  | elpwg 4603 | . . . . . . 7
⊢ ({𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ V → ({𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ 𝒫 𝐽 ↔ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ⊆ 𝐽)) | 
| 5 | 3, 4 | mpbiri 258 | . . . . . 6
⊢ ({𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ V → {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ 𝒫 𝐽) | 
| 6 | 2, 5 | syl 17 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ 𝒫 𝐽) | 
| 7 |  | unieq 4918 | . . . . . . . 8
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∪ 𝑐 = ∪
{𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) | 
| 8 | 7 | sseq2d 4016 | . . . . . . 7
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝑆 ⊆ ∪ 𝑐 ↔ 𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 9 |  | pweq 4614 | . . . . . . . . 9
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → 𝒫 𝑐 = 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) | 
| 10 | 9 | ineq1d 4219 | . . . . . . . 8
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝒫 𝑐 ∩ Fin) = (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)) | 
| 11 | 10 | rexeqdv 3327 | . . . . . . 7
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑 ↔ ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑)) | 
| 12 | 8, 11 | imbi12d 344 | . . . . . 6
⊢ (𝑐 = {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ((𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) ↔ (𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | 
| 13 | 12 | rspcva 3620 | . . . . 5
⊢ (({𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∈ 𝒫 𝐽 ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑)) → (𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑)) | 
| 14 | 6, 13 | sylan 580 | . . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑)) → (𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑)) | 
| 15 | 14 | ex 412 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → (𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | 
| 16 |  | cmpsub.1 | . . . . . . . 8
⊢ 𝑋 = ∪
𝐽 | 
| 17 | 16 | restuni 23170 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 18 | 17 | adantr 480 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 19 | 18 | eqeq1d 2739 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (𝑆 = ∪ 𝑠 ↔ ∪ (𝐽
↾t 𝑆) =
∪ 𝑠)) | 
| 20 |  | velpw 4605 | . . . . . . . . . . 11
⊢ (𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆) ↔ 𝑠 ⊆ (𝐽 ↾t 𝑆)) | 
| 21 |  | eleq2 2830 | . . . . . . . . . . . . . . 15
⊢ (𝑆 = ∪
𝑠 → (𝑡 ∈ 𝑆 ↔ 𝑡 ∈ ∪ 𝑠)) | 
| 22 |  | eluni 4910 | . . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ∪ 𝑠
↔ ∃𝑢(𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠)) | 
| 23 | 21, 22 | bitrdi 287 | . . . . . . . . . . . . . 14
⊢ (𝑆 = ∪
𝑠 → (𝑡 ∈ 𝑆 ↔ ∃𝑢(𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠))) | 
| 24 | 23 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑡 ∈ 𝑆 ↔ ∃𝑢(𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠))) | 
| 25 |  | ssel 3977 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ⊆ (𝐽 ↾t 𝑆) → (𝑢 ∈ 𝑠 → 𝑢 ∈ (𝐽 ↾t 𝑆))) | 
| 26 | 16 | sseq2i 4013 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽) | 
| 27 |  | uniexg 7760 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) | 
| 28 |  | ssexg 5323 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑆 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ∈ V) → 𝑆 ∈ V) | 
| 29 | 28 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((∪ 𝐽
∈ V ∧ 𝑆 ⊆
∪ 𝐽) → 𝑆 ∈ V) | 
| 30 | 27, 29 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ 𝑆 ∈
V) | 
| 31 | 26, 30 | sylan2b 594 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ V) | 
| 32 |  | elrest 17472 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝑢 ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑤 ∈ 𝐽 𝑢 = (𝑤 ∩ 𝑆))) | 
| 33 | 31, 32 | syldan 591 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑢 ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑤 ∈ 𝐽 𝑢 = (𝑤 ∩ 𝑆))) | 
| 34 |  | inss1 4237 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 ∩ 𝑆) ⊆ 𝑤 | 
| 35 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = (𝑤 ∩ 𝑆) → (𝑢 ⊆ 𝑤 ↔ (𝑤 ∩ 𝑆) ⊆ 𝑤)) | 
| 36 | 34, 35 | mpbiri 258 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑢 = (𝑤 ∩ 𝑆) → 𝑢 ⊆ 𝑤) | 
| 37 | 36 | sselda 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑢 = (𝑤 ∩ 𝑆) ∧ 𝑡 ∈ 𝑢) → 𝑡 ∈ 𝑤) | 
| 38 | 37 | 3ad2antl3 1188 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑡 ∈ 𝑢) → 𝑡 ∈ 𝑤) | 
| 39 | 38 | 3adant2 1132 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢) → 𝑡 ∈ 𝑤) | 
| 40 |  | ineq1 4213 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑤 → (𝑦 ∩ 𝑆) = (𝑤 ∩ 𝑆)) | 
| 41 | 40 | eleq1d 2826 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑤 → ((𝑦 ∩ 𝑆) ∈ 𝑠 ↔ (𝑤 ∩ 𝑆) ∈ 𝑠)) | 
| 42 |  | simp12 1205 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢) → 𝑤 ∈ 𝐽) | 
| 43 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = (𝑤 ∩ 𝑆) → (𝑢 ∈ 𝑠 ↔ (𝑤 ∩ 𝑆) ∈ 𝑠)) | 
| 44 | 43 | biimpa 476 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 = (𝑤 ∩ 𝑆) ∧ 𝑢 ∈ 𝑠) → (𝑤 ∩ 𝑆) ∈ 𝑠) | 
| 45 | 44 | 3ad2antl3 1188 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠) → (𝑤 ∩ 𝑆) ∈ 𝑠) | 
| 46 | 45 | 3adant3 1133 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢) → (𝑤 ∩ 𝑆) ∈ 𝑠) | 
| 47 | 41, 42, 46 | elrabd 3694 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢) → 𝑤 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) | 
| 48 |  | vex 3484 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑤 ∈ V | 
| 49 |  | eleq2 2830 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = 𝑤 → (𝑡 ∈ 𝑣 ↔ 𝑡 ∈ 𝑤)) | 
| 50 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = 𝑤 → (𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ↔ 𝑤 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 51 | 49, 50 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = 𝑤 → ((𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) ↔ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 52 | 48, 51 | spcev 3606 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 53 | 39, 47, 52 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 54 | 53 | 3exp 1120 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = (𝑤 ∩ 𝑆)) → (𝑢 ∈ 𝑠 → (𝑡 ∈ 𝑢 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})))) | 
| 55 | 54 | rexlimdv3a 3159 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∃𝑤 ∈ 𝐽 𝑢 = (𝑤 ∩ 𝑆) → (𝑢 ∈ 𝑠 → (𝑡 ∈ 𝑢 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 56 | 33, 55 | sylbid 240 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑢 ∈ (𝐽 ↾t 𝑆) → (𝑢 ∈ 𝑠 → (𝑡 ∈ 𝑢 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 57 | 56 | com23 86 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑢 ∈ 𝑠 → (𝑢 ∈ (𝐽 ↾t 𝑆) → (𝑡 ∈ 𝑢 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 58 | 57 | com4l 92 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ 𝑠 → (𝑢 ∈ (𝐽 ↾t 𝑆) → (𝑡 ∈ 𝑢 → ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 59 | 25, 58 | sylcom 30 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ⊆ (𝐽 ↾t 𝑆) → (𝑢 ∈ 𝑠 → (𝑡 ∈ 𝑢 → ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 60 | 59 | com24 95 | . . . . . . . . . . . . . . . . 17
⊢ (𝑠 ⊆ (𝐽 ↾t 𝑆) → ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑡 ∈ 𝑢 → (𝑢 ∈ 𝑠 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))))) | 
| 61 | 60 | impcom 407 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) → (𝑡 ∈ 𝑢 → (𝑢 ∈ 𝑠 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})))) | 
| 62 | 61 | impd 410 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) → ((𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 63 | 62 | exlimdv 1933 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) → (∃𝑢(𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 64 | 63 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (∃𝑢(𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠) → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 65 | 24, 64 | sylbid 240 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑡 ∈ 𝑆 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 66 | 65 | ex 412 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ⊆ (𝐽 ↾t 𝑆)) → (𝑆 = ∪ 𝑠 → (𝑡 ∈ 𝑆 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})))) | 
| 67 | 20, 66 | sylan2b 594 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (𝑆 = ∪ 𝑠 → (𝑡 ∈ 𝑆 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})))) | 
| 68 | 67 | imp 406 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑡 ∈ 𝑆 → ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}))) | 
| 69 |  | eluni 4910 | . . . . . . . . 9
⊢ (𝑡 ∈ ∪ {𝑦
∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ↔ ∃𝑣(𝑡 ∈ 𝑣 ∧ 𝑣 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 70 | 68, 69 | imbitrrdi 252 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑡 ∈ 𝑆 → 𝑡 ∈ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 71 | 70 | ssrdv 3989 | . . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → 𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) | 
| 72 |  | pm2.27 42 | . . . . . . . . 9
⊢ (𝑆 ⊆ ∪ {𝑦
∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑)) | 
| 73 |  | elin 3967 | . . . . . . . . . . 11
⊢ (𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin) ↔ (𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin)) | 
| 74 |  | vex 3484 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑡 ∈ V | 
| 75 |  | eqeq1 2741 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑡 → (𝑥 = (𝑧 ∩ 𝑆) ↔ 𝑡 = (𝑧 ∩ 𝑆))) | 
| 76 | 75 | rexbidv 3179 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑡 → (∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆) ↔ ∃𝑧 ∈ 𝑑 𝑡 = (𝑧 ∩ 𝑆))) | 
| 77 | 74, 76 | elab 3679 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ↔ ∃𝑧 ∈ 𝑑 𝑡 = (𝑧 ∩ 𝑆)) | 
| 78 |  | velpw 4605 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ↔ 𝑑 ⊆ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠}) | 
| 79 |  | ssel 3977 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 ⊆ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝑧 ∈ 𝑑 → 𝑧 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠})) | 
| 80 |  | ineq1 4213 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑧 → (𝑦 ∩ 𝑆) = (𝑧 ∩ 𝑆)) | 
| 81 | 80 | eleq1d 2826 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → ((𝑦 ∩ 𝑆) ∈ 𝑠 ↔ (𝑧 ∩ 𝑆) ∈ 𝑠)) | 
| 82 | 81 | elrab 3692 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ↔ (𝑧 ∈ 𝐽 ∧ (𝑧 ∩ 𝑆) ∈ 𝑠)) | 
| 83 |  | eleq1a 2836 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∩ 𝑆) ∈ 𝑠 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠)) | 
| 84 | 82, 83 | simplbiim 504 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠)) | 
| 85 | 79, 84 | syl6 35 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 ⊆ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝑧 ∈ 𝑑 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠))) | 
| 86 | 85 | 2a1d 26 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ⊆ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → (𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑧 ∈ 𝑑 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠))))) | 
| 87 | 86 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ⊆ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) → (𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑧 ∈ 𝑑 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠))))) | 
| 88 | 78, 87 | sylanb 581 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) → (𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑧 ∈ 𝑑 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠))))) | 
| 89 | 88 | 3imp 1111 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → (𝑧 ∈ 𝑑 → (𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠))) | 
| 90 | 89 | rexlimdv 3153 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → (∃𝑧 ∈ 𝑑 𝑡 = (𝑧 ∩ 𝑆) → 𝑡 ∈ 𝑠)) | 
| 91 | 77, 90 | biimtrid 242 | . . . . . . . . . . . . . . . 16
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → (𝑡 ∈ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} → 𝑡 ∈ 𝑠)) | 
| 92 | 91 | ssrdv 3989 | . . . . . . . . . . . . . . 15
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ⊆ 𝑠) | 
| 93 |  | vex 3484 | . . . . . . . . . . . . . . . . 17
⊢ 𝑑 ∈ V | 
| 94 | 93 | abrexex 7987 | . . . . . . . . . . . . . . . 16
⊢ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ V | 
| 95 | 94 | elpw 4604 | . . . . . . . . . . . . . . 15
⊢ ({𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ 𝒫 𝑠 ↔ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ⊆ 𝑠) | 
| 96 | 92, 95 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ 𝒫 𝑠) | 
| 97 |  | abrexfi 9392 | . . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ Fin → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ Fin) | 
| 98 | 97 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑) → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ Fin) | 
| 99 | 98 | 3adant3 1133 | . . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ Fin) | 
| 100 | 96, 99 | elind 4200 | . . . . . . . . . . . . 13
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ (𝒫 𝑠 ∩ Fin)) | 
| 101 |  | dfss 3970 | . . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ ∪ 𝑑
↔ 𝑆 = (𝑆 ∩ ∪ 𝑑)) | 
| 102 | 101 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ ∪ 𝑑
→ 𝑆 = (𝑆 ∩ ∪ 𝑑)) | 
| 103 |  | uniiun 5058 | . . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑑 =
∪ 𝑧 ∈ 𝑑 𝑧 | 
| 104 | 103 | ineq2i 4217 | . . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∩ ∪ 𝑑) =
(𝑆 ∩ ∪ 𝑧 ∈ 𝑑 𝑧) | 
| 105 |  | iunin2 5071 | . . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑧 ∈ 𝑑 (𝑆 ∩ 𝑧) = (𝑆 ∩ ∪
𝑧 ∈ 𝑑 𝑧) | 
| 106 |  | incom 4209 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∩ 𝑧) = (𝑧 ∩ 𝑆) | 
| 107 | 106 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑑 → (𝑆 ∩ 𝑧) = (𝑧 ∩ 𝑆)) | 
| 108 | 107 | iuneq2i 5013 | . . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑧 ∈ 𝑑 (𝑆 ∩ 𝑧) = ∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆) | 
| 109 | 104, 105,
108 | 3eqtr2i 2771 | . . . . . . . . . . . . . . . 16
⊢ (𝑆 ∩ ∪ 𝑑) =
∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆) | 
| 110 | 102, 109 | eqtrdi 2793 | . . . . . . . . . . . . . . 15
⊢ (𝑆 ⊆ ∪ 𝑑
→ 𝑆 = ∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆)) | 
| 111 | 110 | 3ad2ant2 1135 | . . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → 𝑆 = ∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆)) | 
| 112 | 18 | ad2antrl 728 | . . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ ∪ 𝑑
∧ (((𝐽 ∈ Top ∧
𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 113 | 112 | 3adant1 1131 | . . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 114 |  | vex 3484 | . . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ V | 
| 115 | 114 | inex1 5317 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 ∩ 𝑆) ∈ V | 
| 116 | 115 | dfiun2 5033 | . . . . . . . . . . . . . . 15
⊢ ∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆) = ∪ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} | 
| 117 | 116 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → ∪ 𝑧 ∈ 𝑑 (𝑧 ∩ 𝑆) = ∪ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)}) | 
| 118 | 111, 113,
117 | 3eqtr3d 2785 | . . . . . . . . . . . . 13
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → ∪ (𝐽
↾t 𝑆) =
∪ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)}) | 
| 119 |  | unieq 4918 | . . . . . . . . . . . . . 14
⊢ (𝑡 = {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} → ∪ 𝑡 = ∪
{𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)}) | 
| 120 | 119 | rspceeqv 3645 | . . . . . . . . . . . . 13
⊢ (({𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)} ∈ (𝒫 𝑠 ∩ Fin) ∧ ∪ (𝐽
↾t 𝑆) =
∪ {𝑥 ∣ ∃𝑧 ∈ 𝑑 𝑥 = (𝑧 ∩ 𝑆)}) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪
(𝐽 ↾t
𝑆) = ∪ 𝑡) | 
| 121 | 100, 118,
120 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠)) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡) | 
| 122 | 121 | 3exp 1120 | . . . . . . . . . . 11
⊢ ((𝑑 ∈ 𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∧ 𝑑 ∈ Fin) → (𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 123 | 73, 122 | sylbi 217 | . . . . . . . . . 10
⊢ (𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin) → (𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 124 | 123 | rexlimiv 3148 | . . . . . . . . 9
⊢
(∃𝑑 ∈
(𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑 → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡)) | 
| 125 | 72, 124 | syl6 35 | . . . . . . . 8
⊢ (𝑆 ⊆ ∪ {𝑦
∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 126 | 125 | com3r 87 | . . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → (𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 127 | 71, 126 | mpd 15 | . . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) ∧ 𝑆 = ∪ 𝑠) → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡)) | 
| 128 | 127 | ex 412 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (𝑆 = ∪ 𝑠 → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 129 | 19, 128 | sylbird 260 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (∪
(𝐽 ↾t
𝑆) = ∪ 𝑠
→ ((𝑆 ⊆ ∪ {𝑦
∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽
↾t 𝑆) =
∪ 𝑡))) | 
| 130 | 129 | com23 86 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → ((𝑆 ⊆ ∪ {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} → ∃𝑑 ∈ (𝒫 {𝑦 ∈ 𝐽 ∣ (𝑦 ∩ 𝑆) ∈ 𝑠} ∩ Fin)𝑆 ⊆ ∪ 𝑑) → (∪ (𝐽
↾t 𝑆) =
∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪
(𝐽 ↾t
𝑆) = ∪ 𝑡))) | 
| 131 | 15, 130 | syld 47 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → (∪ (𝐽
↾t 𝑆) =
∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪
(𝐽 ↾t
𝑆) = ∪ 𝑡))) | 
| 132 | 131 | ralrimdva 3154 | 1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪
(𝐽 ↾t
𝑆) = ∪ 𝑠
→ ∃𝑡 ∈
(𝒫 𝑠 ∩
Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) |