| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiinf2g | Structured version Visualization version GIF version | ||
| Description: A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
| Ref | Expression |
|---|---|
| fiinf2g | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soss 5547 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
| 2 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → 𝑅 Or 𝐵) | |
| 3 | fiinfg 9391 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 4 | 2, 3 | infeu 9388 | . . . . . 6 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 5 | 4 | 3exp 1119 | . . . . 5 ⊢ (𝑅 Or 𝐵 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))))) |
| 6 | 1, 5 | syl6 35 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))))) |
| 7 | 6 | com4l 92 | . . 3 ⊢ (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → (𝐵 ⊆ 𝐴 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))))) |
| 8 | 7 | 3imp2 1350 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 9 | reurex 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
| 10 | breq1 5095 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑥𝑅𝑦)) | |
| 11 | 10 | rspcev 3577 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 13 | 12 | ralrimivw 3125 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 14 | 13 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 15 | 14 | anim2d 612 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
| 16 | 15 | reximia 3064 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| 17 | 8, 9, 16 | 3syl 18 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∃!wreu 3341 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 Or wor 5526 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-en 8873 df-fin 8876 |
| This theorem is referenced by: ballotlemsup 34479 |
| Copyright terms: Public domain | W3C validator |