Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiinf2g | Structured version Visualization version GIF version |
Description: A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fiinf2g | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soss 5534 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝐵)) | |
2 | simp1 1136 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → 𝑅 Or 𝐵) | |
3 | fiinfg 9302 | . . . . . . 7 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
4 | 2, 3 | infeu 9299 | . . . . . 6 ⊢ ((𝑅 Or 𝐵 ∧ 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
5 | 4 | 3exp 1119 | . . . . 5 ⊢ (𝑅 Or 𝐵 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))))) |
6 | 1, 5 | syl6 35 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))))) |
7 | 6 | com4l 92 | . . 3 ⊢ (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → (𝐵 ⊆ 𝐴 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))))) |
8 | 7 | 3imp2 1349 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
9 | reurex 3374 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
10 | breq1 5084 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑥𝑅𝑦)) | |
11 | 10 | rspcev 3566 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
12 | 11 | ex 414 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
13 | 12 | ralrimivw 3144 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
14 | 13 | a1d 25 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
15 | 14 | anim2d 613 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) |
16 | 15 | reximia 3081 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
17 | 8, 9, 16 | 3syl 18 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∃!wreu 3282 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 Or wor 5513 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-en 8765 df-fin 8768 |
This theorem is referenced by: ballotlemsup 32516 |
Copyright terms: Public domain | W3C validator |