MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinf2g Structured version   Visualization version   GIF version

Theorem fiinf2g 9010
Description: A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiinf2g ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem fiinf2g
StepHypRef Expression
1 soss 5466 . . . . 5 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
2 simp1 1133 . . . . . . 7 ((𝑅 Or 𝐵𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → 𝑅 Or 𝐵)
3 fiinfg 9009 . . . . . . 7 ((𝑅 Or 𝐵𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
42, 3infeu 9006 . . . . . 6 ((𝑅 Or 𝐵𝐵 ∈ Fin ∧ 𝐵 ≠ ∅) → ∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
543exp 1116 . . . . 5 (𝑅 Or 𝐵 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))))
61, 5syl6 35 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → ∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))))
76com4l 92 . . 3 (𝑅 Or 𝐴 → (𝐵 ∈ Fin → (𝐵 ≠ ∅ → (𝐵𝐴 → ∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))))
873imp2 1346 . 2 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
9 reurex 3341 . 2 (∃!𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
10 breq1 5039 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1110rspcev 3543 . . . . . . 7 ((𝑥𝐵𝑥𝑅𝑦) → ∃𝑧𝐵 𝑧𝑅𝑦)
1211ex 416 . . . . . 6 (𝑥𝐵 → (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
1312ralrimivw 3114 . . . . 5 (𝑥𝐵 → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
1413a1d 25 . . . 4 (𝑥𝐵 → (∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1514anim2d 614 . . 3 (𝑥𝐵 → ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
1615reximia 3170 . 2 (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐵 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
178, 9, 163syl 18 1 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084  wcel 2111  wne 2951  wral 3070  wrex 3071  ∃!wreu 3072  wss 3860  c0 4227   class class class wbr 5036   Or wor 5446  Fincfn 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-en 8541  df-fin 8544
This theorem is referenced by:  ballotlemsup  32003
  Copyright terms: Public domain W3C validator