Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftmolem1 Structured version   Visualization version   GIF version

Theorem cvmliftmolem1 31601
Description: Lemma for cvmliftmo 31604. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftmo.k (𝜑𝐾 ∈ Conn)
cvmliftmo.l (𝜑𝐾 ∈ 𝑛-Locally Conn)
cvmliftmo.o (𝜑𝑂𝑌)
cvmliftmoi.m (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.n (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
cvmliftmoi.g (𝜑 → (𝐹𝑀) = (𝐹𝑁))
cvmliftmoi.p (𝜑 → (𝑀𝑂) = (𝑁𝑂))
cvmliftmolem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftmolem.2 ((𝜑𝜓) → 𝑇 ∈ (𝑆𝑈))
cvmliftmolem.3 ((𝜑𝜓) → 𝑊𝑇)
cvmliftmolem.4 ((𝜑𝜓) → 𝐼 ⊆ (𝑀𝑊))
cvmliftmolem.5 ((𝜑𝜓) → (𝐾t 𝐼) ∈ Conn)
cvmliftmolem.6 ((𝜑𝜓) → 𝑋𝐼)
cvmliftmolem.7 ((𝜑𝜓) → 𝑄𝐼)
cvmliftmolem.8 ((𝜑𝜓) → 𝑅𝐼)
cvmliftmolem.9 ((𝜑𝜓) → (𝐹‘(𝑀𝑋)) ∈ 𝑈)
Assertion
Ref Expression
cvmliftmolem1 ((𝜑𝜓) → (𝑄 ∈ dom (𝑀𝑁) → 𝑅 ∈ dom (𝑀𝑁)))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐽,𝑠,𝑢,𝑣   𝑣,𝐵   𝐾,𝑠   𝑘,𝑀,𝑠,𝑢,𝑣   𝑁,𝑠   𝜑,𝑠   𝑘,𝐹,𝑠,𝑢,𝑣   𝑆,𝑠   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝑊,𝑣   𝑌,𝑠
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑄(𝑣,𝑢,𝑘,𝑠)   𝑅(𝑣,𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘)   𝑇(𝑘)   𝐼(𝑣,𝑢,𝑘,𝑠)   𝐾(𝑣,𝑢,𝑘)   𝑁(𝑣,𝑢,𝑘)   𝑂(𝑣,𝑢,𝑘,𝑠)   𝑊(𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)   𝑌(𝑣,𝑢,𝑘)

Proof of Theorem cvmliftmolem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmliftmoi.g . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = (𝐹𝑁))
21adantr 466 . . . . . . . . 9 ((𝜑𝜓) → (𝐹𝑀) = (𝐹𝑁))
32fveq1d 6334 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑀)‘𝑅) = ((𝐹𝑁)‘𝑅))
4 cvmliftmolem.4 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐼 ⊆ (𝑀𝑊))
5 cvmliftmolem.8 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑅𝐼)
64, 5sseldd 3753 . . . . . . . . . 10 ((𝜑𝜓) → 𝑅 ∈ (𝑀𝑊))
7 cvmliftmoi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝐾 Cn 𝐶))
8 cvmliftmo.y . . . . . . . . . . . . . . 15 𝑌 = 𝐾
9 cvmliftmo.b . . . . . . . . . . . . . . 15 𝐵 = 𝐶
108, 9cnf 21271 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝐾 Cn 𝐶) → 𝑀:𝑌𝐵)
117, 10syl 17 . . . . . . . . . . . . 13 (𝜑𝑀:𝑌𝐵)
12 ffn 6185 . . . . . . . . . . . . 13 (𝑀:𝑌𝐵𝑀 Fn 𝑌)
1311, 12syl 17 . . . . . . . . . . . 12 (𝜑𝑀 Fn 𝑌)
14 elpreima 6480 . . . . . . . . . . . 12 (𝑀 Fn 𝑌 → (𝑅 ∈ (𝑀𝑊) ↔ (𝑅𝑌 ∧ (𝑀𝑅) ∈ 𝑊)))
1513, 14syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ (𝑀𝑊) ↔ (𝑅𝑌 ∧ (𝑀𝑅) ∈ 𝑊)))
1615simprbda 486 . . . . . . . . . 10 ((𝜑𝑅 ∈ (𝑀𝑊)) → 𝑅𝑌)
176, 16syldan 579 . . . . . . . . 9 ((𝜑𝜓) → 𝑅𝑌)
18 fvco3 6417 . . . . . . . . . 10 ((𝑀:𝑌𝐵𝑅𝑌) → ((𝐹𝑀)‘𝑅) = (𝐹‘(𝑀𝑅)))
1911, 18sylan 569 . . . . . . . . 9 ((𝜑𝑅𝑌) → ((𝐹𝑀)‘𝑅) = (𝐹‘(𝑀𝑅)))
2017, 19syldan 579 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑀)‘𝑅) = (𝐹‘(𝑀𝑅)))
21 cvmliftmoi.n . . . . . . . . . . 11 (𝜑𝑁 ∈ (𝐾 Cn 𝐶))
228, 9cnf 21271 . . . . . . . . . . 11 (𝑁 ∈ (𝐾 Cn 𝐶) → 𝑁:𝑌𝐵)
2321, 22syl 17 . . . . . . . . . 10 (𝜑𝑁:𝑌𝐵)
24 fvco3 6417 . . . . . . . . . 10 ((𝑁:𝑌𝐵𝑅𝑌) → ((𝐹𝑁)‘𝑅) = (𝐹‘(𝑁𝑅)))
2523, 24sylan 569 . . . . . . . . 9 ((𝜑𝑅𝑌) → ((𝐹𝑁)‘𝑅) = (𝐹‘(𝑁𝑅)))
2617, 25syldan 579 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝑅) = (𝐹‘(𝑁𝑅)))
273, 20, 263eqtr3d 2813 . . . . . . 7 ((𝜑𝜓) → (𝐹‘(𝑀𝑅)) = (𝐹‘(𝑁𝑅)))
2827adantr 466 . . . . . 6 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝐹‘(𝑀𝑅)) = (𝐹‘(𝑁𝑅)))
2915simplbda 487 . . . . . . . . 9 ((𝜑𝑅 ∈ (𝑀𝑊)) → (𝑀𝑅) ∈ 𝑊)
306, 29syldan 579 . . . . . . . 8 ((𝜑𝜓) → (𝑀𝑅) ∈ 𝑊)
3130adantr 466 . . . . . . 7 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑀𝑅) ∈ 𝑊)
32 fvres 6348 . . . . . . 7 ((𝑀𝑅) ∈ 𝑊 → ((𝐹𝑊)‘(𝑀𝑅)) = (𝐹‘(𝑀𝑅)))
3331, 32syl 17 . . . . . 6 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝐹𝑊)‘(𝑀𝑅)) = (𝐹‘(𝑀𝑅)))
345adantr 466 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝑅𝐼)
35 fvres 6348 . . . . . . . . 9 (𝑅𝐼 → ((𝑁𝐼)‘𝑅) = (𝑁𝑅))
3634, 35syl 17 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝑁𝐼)‘𝑅) = (𝑁𝑅))
37 eqid 2771 . . . . . . . . . . 11 (𝐾t 𝐼) = (𝐾t 𝐼)
38 cvmliftmolem.5 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝐾t 𝐼) ∈ Conn)
3938adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝐾t 𝐼) ∈ Conn)
4021adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑁 ∈ (𝐾 Cn 𝐶))
41 cnvimass 5626 . . . . . . . . . . . . . . . . 17 (𝑀𝑊) ⊆ dom 𝑀
42 fdm 6191 . . . . . . . . . . . . . . . . . 18 (𝑀:𝑌𝐵 → dom 𝑀 = 𝑌)
4311, 42syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑀 = 𝑌)
4441, 43syl5sseq 3802 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀𝑊) ⊆ 𝑌)
4544adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝑀𝑊) ⊆ 𝑌)
464, 45sstrd 3762 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐼𝑌)
478cnrest 21310 . . . . . . . . . . . . . 14 ((𝑁 ∈ (𝐾 Cn 𝐶) ∧ 𝐼𝑌) → (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn 𝐶))
4840, 46, 47syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn 𝐶))
49 cvmliftmo.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5049adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐹 ∈ (𝐶 CovMap 𝐽))
51 cvmtop1 31580 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5250, 51syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐶 ∈ Top)
539toptopon 20942 . . . . . . . . . . . . . . 15 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5452, 53sylib 208 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐶 ∈ (TopOn‘𝐵))
55 df-ima 5262 . . . . . . . . . . . . . . 15 (𝑁𝐼) = ran (𝑁𝐼)
56 cvmliftmolem.3 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜓) → 𝑊𝑇)
57 elssuni 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝑊𝑇𝑊 𝑇)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜓) → 𝑊 𝑇)
59 cvmliftmolem.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜓) → 𝑇 ∈ (𝑆𝑈))
60 cvmliftmolem.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
6160cvmsuni 31589 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
6259, 61syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜓) → 𝑇 = (𝐹𝑈))
6358, 62sseqtrd 3790 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 𝑊 ⊆ (𝐹𝑈))
64 imass2 5642 . . . . . . . . . . . . . . . . . . 19 (𝑊 ⊆ (𝐹𝑈) → (𝑀𝑊) ⊆ (𝑀 “ (𝐹𝑈)))
6563, 64syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑀𝑊) ⊆ (𝑀 “ (𝐹𝑈)))
664, 65sstrd 3762 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐼 ⊆ (𝑀 “ (𝐹𝑈)))
672cnveqd 5436 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜓) → (𝐹𝑀) = (𝐹𝑁))
68 cnvco 5446 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑀) = (𝑀𝐹)
69 cnvco 5446 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑁) = (𝑁𝐹)
7067, 68, 693eqtr3g 2828 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → (𝑀𝐹) = (𝑁𝐹))
7170imaeq1d 5606 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((𝑀𝐹) “ 𝑈) = ((𝑁𝐹) “ 𝑈))
72 imaco 5784 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐹) “ 𝑈) = (𝑀 “ (𝐹𝑈))
73 imaco 5784 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐹) “ 𝑈) = (𝑁 “ (𝐹𝑈))
7471, 72, 733eqtr3g 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑀 “ (𝐹𝑈)) = (𝑁 “ (𝐹𝑈)))
7566, 74sseqtrd 3790 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐼 ⊆ (𝑁 “ (𝐹𝑈)))
7623adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → 𝑁:𝑌𝐵)
77 ffun 6188 . . . . . . . . . . . . . . . . . 18 (𝑁:𝑌𝐵 → Fun 𝑁)
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → Fun 𝑁)
79 fdm 6191 . . . . . . . . . . . . . . . . . . 19 (𝑁:𝑌𝐵 → dom 𝑁 = 𝑌)
8076, 79syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → dom 𝑁 = 𝑌)
8146, 80sseqtr4d 3791 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐼 ⊆ dom 𝑁)
82 funimass3 6476 . . . . . . . . . . . . . . . . 17 ((Fun 𝑁𝐼 ⊆ dom 𝑁) → ((𝑁𝐼) ⊆ (𝐹𝑈) ↔ 𝐼 ⊆ (𝑁 “ (𝐹𝑈))))
8378, 81, 82syl2anc 573 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → ((𝑁𝐼) ⊆ (𝐹𝑈) ↔ 𝐼 ⊆ (𝑁 “ (𝐹𝑈))))
8475, 83mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝑁𝐼) ⊆ (𝐹𝑈))
8555, 84syl5eqssr 3799 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ran (𝑁𝐼) ⊆ (𝐹𝑈))
86 cnvimass 5626 . . . . . . . . . . . . . . 15 (𝐹𝑈) ⊆ dom 𝐹
87 cvmcn 31582 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8849, 87syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
89 eqid 2771 . . . . . . . . . . . . . . . . . . 19 𝐽 = 𝐽
909, 89cnf 21271 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
9188, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐵 𝐽)
92 fdm 6191 . . . . . . . . . . . . . . . . 17 (𝐹:𝐵 𝐽 → dom 𝐹 = 𝐵)
9391, 92syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐵)
9493adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → dom 𝐹 = 𝐵)
9586, 94syl5sseq 3802 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝐹𝑈) ⊆ 𝐵)
96 cnrest2 21311 . . . . . . . . . . . . . 14 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝑁𝐼) ⊆ (𝐹𝑈) ∧ (𝐹𝑈) ⊆ 𝐵) → ((𝑁𝐼) ∈ ((𝐾t 𝐼) Cn 𝐶) ↔ (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn (𝐶t (𝐹𝑈)))))
9754, 85, 95, 96syl3anc 1476 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑁𝐼) ∈ ((𝐾t 𝐼) Cn 𝐶) ↔ (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn (𝐶t (𝐹𝑈)))))
9848, 97mpbid 222 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn (𝐶t (𝐹𝑈))))
9998adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑁𝐼) ∈ ((𝐾t 𝐼) Cn (𝐶t (𝐹𝑈))))
100 df-ss 3737 . . . . . . . . . . . . . 14 (𝑊 ⊆ (𝐹𝑈) ↔ (𝑊 ∩ (𝐹𝑈)) = 𝑊)
10163, 100sylib 208 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑊 ∩ (𝐹𝑈)) = 𝑊)
1029topopn 20931 . . . . . . . . . . . . . . . 16 (𝐶 ∈ Top → 𝐵𝐶)
10352, 102syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐵𝐶)
104103, 95ssexd 4939 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝐹𝑈) ∈ V)
10560cvmsss 31587 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
10659, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑇𝐶)
107106, 56sseldd 3753 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑊𝐶)
108 elrestr 16297 . . . . . . . . . . . . . 14 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V ∧ 𝑊𝐶) → (𝑊 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
10952, 104, 107, 108syl3anc 1476 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑊 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
110101, 109eqeltrrd 2851 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑊 ∈ (𝐶t (𝐹𝑈)))
111110adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝑊 ∈ (𝐶t (𝐹𝑈)))
11260cvmscld 31593 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
11350, 59, 56, 112syl3anc 1476 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
114113adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
115 cvmliftmolem.7 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑄𝐼)
116 cvmliftmo.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ Conn)
117 conntop 21441 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Conn → 𝐾 ∈ Top)
118116, 117syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Top)
119118adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐾 ∈ Top)
1208restuni 21187 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝐼𝑌) → 𝐼 = (𝐾t 𝐼))
121119, 46, 120syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐼 = (𝐾t 𝐼))
122115, 121eleqtrd 2852 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑄 (𝐾t 𝐼))
123122adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝑄 (𝐾t 𝐼))
124115adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝑄𝐼)
125 fvres 6348 . . . . . . . . . . . . 13 (𝑄𝐼 → ((𝑁𝐼)‘𝑄) = (𝑁𝑄))
126124, 125syl 17 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝑁𝐼)‘𝑄) = (𝑁𝑄))
127 simpr 471 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑀𝑄) = (𝑁𝑄))
1284, 115sseldd 3753 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑄 ∈ (𝑀𝑊))
129 elpreima 6480 . . . . . . . . . . . . . . . . 17 (𝑀 Fn 𝑌 → (𝑄 ∈ (𝑀𝑊) ↔ (𝑄𝑌 ∧ (𝑀𝑄) ∈ 𝑊)))
13013, 129syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑀𝑊) ↔ (𝑄𝑌 ∧ (𝑀𝑄) ∈ 𝑊)))
131130simplbda 487 . . . . . . . . . . . . . . 15 ((𝜑𝑄 ∈ (𝑀𝑊)) → (𝑀𝑄) ∈ 𝑊)
132128, 131syldan 579 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑀𝑄) ∈ 𝑊)
133132adantr 466 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑀𝑄) ∈ 𝑊)
134127, 133eqeltrrd 2851 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑁𝑄) ∈ 𝑊)
135126, 134eqeltrd 2850 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝑁𝐼)‘𝑄) ∈ 𝑊)
13637, 39, 99, 111, 114, 123, 135conncn 21450 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑁𝐼): (𝐾t 𝐼)⟶𝑊)
137121adantr 466 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → 𝐼 = (𝐾t 𝐼))
138137feq2d 6171 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝑁𝐼):𝐼𝑊 ↔ (𝑁𝐼): (𝐾t 𝐼)⟶𝑊))
139136, 138mpbird 247 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑁𝐼):𝐼𝑊)
140139, 34ffvelrnd 6503 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝑁𝐼)‘𝑅) ∈ 𝑊)
14136, 140eqeltrrd 2851 . . . . . . 7 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑁𝑅) ∈ 𝑊)
142 fvres 6348 . . . . . . 7 ((𝑁𝑅) ∈ 𝑊 → ((𝐹𝑊)‘(𝑁𝑅)) = (𝐹‘(𝑁𝑅)))
143141, 142syl 17 . . . . . 6 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝐹𝑊)‘(𝑁𝑅)) = (𝐹‘(𝑁𝑅)))
14428, 33, 1433eqtr4d 2815 . . . . 5 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → ((𝐹𝑊)‘(𝑀𝑅)) = ((𝐹𝑊)‘(𝑁𝑅)))
14560cvmsf1o 31592 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝑊𝑇) → (𝐹𝑊):𝑊1-1-onto𝑈)
14650, 59, 56, 145syl3anc 1476 . . . . . . . 8 ((𝜑𝜓) → (𝐹𝑊):𝑊1-1-onto𝑈)
147 f1of1 6277 . . . . . . . 8 ((𝐹𝑊):𝑊1-1-onto𝑈 → (𝐹𝑊):𝑊1-1𝑈)
148146, 147syl 17 . . . . . . 7 ((𝜑𝜓) → (𝐹𝑊):𝑊1-1𝑈)
149148adantr 466 . . . . . 6 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝐹𝑊):𝑊1-1𝑈)
150 f1fveq 6662 . . . . . 6 (((𝐹𝑊):𝑊1-1𝑈 ∧ ((𝑀𝑅) ∈ 𝑊 ∧ (𝑁𝑅) ∈ 𝑊)) → (((𝐹𝑊)‘(𝑀𝑅)) = ((𝐹𝑊)‘(𝑁𝑅)) ↔ (𝑀𝑅) = (𝑁𝑅)))
151149, 31, 141, 150syl12anc 1474 . . . . 5 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (((𝐹𝑊)‘(𝑀𝑅)) = ((𝐹𝑊)‘(𝑁𝑅)) ↔ (𝑀𝑅) = (𝑁𝑅)))
152144, 151mpbid 222 . . . 4 (((𝜑𝜓) ∧ (𝑀𝑄) = (𝑁𝑄)) → (𝑀𝑅) = (𝑁𝑅))
153152ex 397 . . 3 ((𝜑𝜓) → ((𝑀𝑄) = (𝑁𝑄) → (𝑀𝑅) = (𝑁𝑅)))
154130simprbda 486 . . . . 5 ((𝜑𝑄 ∈ (𝑀𝑊)) → 𝑄𝑌)
155128, 154syldan 579 . . . 4 ((𝜑𝜓) → 𝑄𝑌)
156 fveq2 6332 . . . . . 6 (𝑥 = 𝑄 → (𝑀𝑥) = (𝑀𝑄))
157 fveq2 6332 . . . . . 6 (𝑥 = 𝑄 → (𝑁𝑥) = (𝑁𝑄))
158156, 157eqeq12d 2786 . . . . 5 (𝑥 = 𝑄 → ((𝑀𝑥) = (𝑁𝑥) ↔ (𝑀𝑄) = (𝑁𝑄)))
159158elrab3 3516 . . . 4 (𝑄𝑌 → (𝑄 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)} ↔ (𝑀𝑄) = (𝑁𝑄)))
160155, 159syl 17 . . 3 ((𝜑𝜓) → (𝑄 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)} ↔ (𝑀𝑄) = (𝑁𝑄)))
161 fveq2 6332 . . . . . 6 (𝑥 = 𝑅 → (𝑀𝑥) = (𝑀𝑅))
162 fveq2 6332 . . . . . 6 (𝑥 = 𝑅 → (𝑁𝑥) = (𝑁𝑅))
163161, 162eqeq12d 2786 . . . . 5 (𝑥 = 𝑅 → ((𝑀𝑥) = (𝑁𝑥) ↔ (𝑀𝑅) = (𝑁𝑅)))
164163elrab3 3516 . . . 4 (𝑅𝑌 → (𝑅 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)} ↔ (𝑀𝑅) = (𝑁𝑅)))
16517, 164syl 17 . . 3 ((𝜑𝜓) → (𝑅 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)} ↔ (𝑀𝑅) = (𝑁𝑅)))
166153, 160, 1653imtr4d 283 . 2 ((𝜑𝜓) → (𝑄 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)} → 𝑅 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)}))
167 ffn 6185 . . . . . 6 (𝑁:𝑌𝐵𝑁 Fn 𝑌)
16823, 167syl 17 . . . . 5 (𝜑𝑁 Fn 𝑌)
169 fndmin 6467 . . . . 5 ((𝑀 Fn 𝑌𝑁 Fn 𝑌) → dom (𝑀𝑁) = {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)})
17013, 168, 169syl2anc 573 . . . 4 (𝜑 → dom (𝑀𝑁) = {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)})
171170adantr 466 . . 3 ((𝜑𝜓) → dom (𝑀𝑁) = {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)})
172171eleq2d 2836 . 2 ((𝜑𝜓) → (𝑄 ∈ dom (𝑀𝑁) ↔ 𝑄 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)}))
173171eleq2d 2836 . 2 ((𝜑𝜓) → (𝑅 ∈ dom (𝑀𝑁) ↔ 𝑅 ∈ {𝑥𝑌 ∣ (𝑀𝑥) = (𝑁𝑥)}))
174166, 172, 1733imtr4d 283 1 ((𝜑𝜓) → (𝑄 ∈ dom (𝑀𝑁) → 𝑅 ∈ dom (𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351  cdif 3720  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316   cuni 4574  cmpt 4863  ccnv 5248  dom cdm 5249  ran crn 5250  cres 5251  cima 5252  ccom 5253  Fun wfun 6025   Fn wfn 6026  wf 6027  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  t crest 16289  Topctop 20918  TopOnctopon 20935  Clsdccld 21041   Cn ccn 21249  Conncconn 21435  𝑛-Locally cnlly 21489  Homeochmeo 21777   CovMap ccvm 31575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-fin 8113  df-fi 8473  df-rest 16291  df-topgen 16312  df-top 20919  df-topon 20936  df-bases 20971  df-cld 21044  df-cn 21252  df-conn 21436  df-hmeo 21779  df-cvm 31576
This theorem is referenced by:  cvmliftmolem2  31602
  Copyright terms: Public domain W3C validator