![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtopconn | Structured version Visualization version GIF version |
Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.) |
Ref | Expression |
---|---|
ordtopconn | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtop 35316 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | |
2 | onsucconn 35318 | . . . 4 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Conn) | |
3 | 2 | ordtoplem 35315 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Conn)) |
4 | 1, 3 | sylbid 239 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Conn)) |
5 | conntop 22920 | . 2 ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | |
6 | 4, 5 | impbid1 224 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ≠ wne 2940 ∪ cuni 4908 Ord word 6363 Topctop 22394 Conncconn 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-topgen 17388 df-top 22395 df-bases 22448 df-cld 22522 df-conn 22915 |
This theorem is referenced by: onintopssconn 35320 |
Copyright terms: Public domain | W3C validator |