Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtopconn Structured version   Visualization version   GIF version

Theorem ordtopconn 33900
Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordtopconn (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))

Proof of Theorem ordtopconn
StepHypRef Expression
1 ordtop 33897 . . 3 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
2 onsucconn 33899 . . . 4 ( 𝐽 ∈ On → suc 𝐽 ∈ Conn)
32ordtoplem 33896 . . 3 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Conn))
41, 3sylbid 243 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Conn))
5 conntop 22022 . 2 (𝐽 ∈ Conn → 𝐽 ∈ Top)
64, 5impbid1 228 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111  wne 2987   cuni 4800  Ord word 6158  Topctop 21498  Conncconn 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-topgen 16709  df-top 21499  df-bases 21551  df-cld 21624  df-conn 22017
This theorem is referenced by:  onintopssconn  33901
  Copyright terms: Public domain W3C validator