Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtopconn Structured version   Visualization version   GIF version

Theorem ordtopconn 35780
Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordtopconn (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))

Proof of Theorem ordtopconn
StepHypRef Expression
1 ordtop 35777 . . 3 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
2 onsucconn 35779 . . . 4 ( 𝐽 ∈ On → suc 𝐽 ∈ Conn)
32ordtoplem 35776 . . 3 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Conn))
41, 3sylbid 239 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Conn))
5 conntop 23242 . 2 (𝐽 ∈ Conn → 𝐽 ∈ Top)
64, 5impbid1 224 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wne 2932   cuni 4899  Ord word 6353  Topctop 22716  Conncconn 23236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541  df-topgen 17387  df-top 22717  df-bases 22770  df-cld 22844  df-conn 23237
This theorem is referenced by:  onintopssconn  35781
  Copyright terms: Public domain W3C validator