Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtopconn Structured version   Visualization version   GIF version

Theorem ordtopconn 36427
Description: An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordtopconn (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))

Proof of Theorem ordtopconn
StepHypRef Expression
1 ordtop 36424 . . 3 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
2 onsucconn 36426 . . . 4 ( 𝐽 ∈ On → suc 𝐽 ∈ Conn)
32ordtoplem 36423 . . 3 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Conn))
41, 3sylbid 240 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Conn))
5 conntop 23304 . 2 (𝐽 ∈ Conn → 𝐽 ∈ Top)
64, 5impbid1 225 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925   cuni 4871  Ord word 6331  Topctop 22780  Conncconn 23298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-topgen 17406  df-top 22781  df-bases 22833  df-cld 22906  df-conn 23299
This theorem is referenced by:  onintopssconn  36428
  Copyright terms: Public domain W3C validator