MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisconn Structured version   Visualization version   GIF version

Theorem indisconn 23447
Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisconn {∅, 𝐴} ∈ Conn

Proof of Theorem indisconn
StepHypRef Expression
1 indistop 23030 . 2 {∅, 𝐴} ∈ Top
2 inss1 4258 . . 3 ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, 𝐴}
3 indislem 23028 . . 3 {∅, ( I ‘𝐴)} = {∅, 𝐴}
42, 3sseqtrri 4046 . 2 ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)}
5 indisuni 23031 . . 3 ( I ‘𝐴) = {∅, 𝐴}
65isconn2 23443 . 2 ({∅, 𝐴} ∈ Conn ↔ ({∅, 𝐴} ∈ Top ∧ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)}))
71, 4, 6mpbir2an 710 1 {∅, 𝐴} ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  cin 3975  wss 3976  c0 4352  {cpr 4650   I cid 5592  cfv 6573  Topctop 22920  Clsdccld 23045  Conncconn 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-top 22921  df-topon 22938  df-cld 23048  df-conn 23441
This theorem is referenced by:  conncompid  23460  cvmlift2lem9  35279
  Copyright terms: Public domain W3C validator