![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indisconn | Structured version Visualization version GIF version |
Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indisconn | ⊢ {∅, 𝐴} ∈ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistop 22504 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
2 | inss1 4228 | . . 3 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, 𝐴} | |
3 | indislem 22502 | . . 3 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
4 | 2, 3 | sseqtrri 4019 | . 2 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)} |
5 | indisuni 22505 | . . 3 ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | |
6 | 5 | isconn2 22917 | . 2 ⊢ ({∅, 𝐴} ∈ Conn ↔ ({∅, 𝐴} ∈ Top ∧ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)})) |
7 | 1, 4, 6 | mpbir2an 709 | 1 ⊢ {∅, 𝐴} ∈ Conn |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {cpr 4630 I cid 5573 ‘cfv 6543 Topctop 22394 Clsdccld 22519 Conncconn 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-top 22395 df-topon 22412 df-cld 22522 df-conn 22915 |
This theorem is referenced by: conncompid 22934 cvmlift2lem9 34297 |
Copyright terms: Public domain | W3C validator |