![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indisconn | Structured version Visualization version GIF version |
Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indisconn | ⊢ {∅, 𝐴} ∈ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistop 22860 | . 2 ⊢ {∅, 𝐴} ∈ Top | |
2 | inss1 4223 | . . 3 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, 𝐴} | |
3 | indislem 22858 | . . 3 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
4 | 2, 3 | sseqtrri 4014 | . 2 ⊢ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)} |
5 | indisuni 22861 | . . 3 ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | |
6 | 5 | isconn2 23273 | . 2 ⊢ ({∅, 𝐴} ∈ Conn ↔ ({∅, 𝐴} ∈ Top ∧ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)})) |
7 | 1, 4, 6 | mpbir2an 708 | 1 ⊢ {∅, 𝐴} ∈ Conn |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 {cpr 4625 I cid 5566 ‘cfv 6537 Topctop 22750 Clsdccld 22875 Conncconn 23270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-top 22751 df-topon 22768 df-cld 22878 df-conn 23271 |
This theorem is referenced by: conncompid 23290 cvmlift2lem9 34830 |
Copyright terms: Public domain | W3C validator |