MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indisconn Structured version   Visualization version   GIF version

Theorem indisconn 23333
Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indisconn {∅, 𝐴} ∈ Conn

Proof of Theorem indisconn
StepHypRef Expression
1 indistop 22917 . 2 {∅, 𝐴} ∈ Top
2 inss1 4184 . . 3 ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, 𝐴}
3 indislem 22915 . . 3 {∅, ( I ‘𝐴)} = {∅, 𝐴}
42, 3sseqtrri 3979 . 2 ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)}
5 indisuni 22918 . . 3 ( I ‘𝐴) = {∅, 𝐴}
65isconn2 23329 . 2 ({∅, 𝐴} ∈ Conn ↔ ({∅, 𝐴} ∈ Top ∧ ({∅, 𝐴} ∩ (Clsd‘{∅, 𝐴})) ⊆ {∅, ( I ‘𝐴)}))
71, 4, 6mpbir2an 711 1 {∅, 𝐴} ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cin 3896  wss 3897  c0 4280  {cpr 4575   I cid 5508  cfv 6481  Topctop 22808  Clsdccld 22931  Conncconn 23326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-top 22809  df-topon 22826  df-cld 22934  df-conn 23327
This theorem is referenced by:  conncompid  23346  cvmlift2lem9  35355
  Copyright terms: Public domain W3C validator