Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  connpconn Structured version   Visualization version   GIF version

Theorem connpconn 34681
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
connpconn ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) β†’ 𝐽 ∈ PConn)

Proof of Theorem connpconn
Dummy variables π‘₯ 𝑓 𝑦 𝑧 𝑔 β„Ž 𝑠 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conntop 23242 . . 3 (𝐽 ∈ Conn β†’ 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) β†’ 𝐽 ∈ Top)
3 eqid 2724 . . . . . 6 βˆͺ 𝐽 = βˆͺ 𝐽
4 simpll 764 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐽 ∈ Conn)
5 inss1 4220 . . . . . . 7 (𝐽 ∩ (Clsdβ€˜π½)) βŠ† 𝐽
6 simplr 766 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ 𝐽 ∈ 𝑛-Locally PConn)
71ad2antrr 723 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ 𝐽 ∈ Top)
83topopn 22729 . . . . . . . . . . . . 13 (𝐽 ∈ Top β†’ βˆͺ 𝐽 ∈ 𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ βˆͺ 𝐽 ∈ 𝐽)
10 simprr 770 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ 𝑧 ∈ βˆͺ 𝐽)
11 nlly2i 23301 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PConn ∧ βˆͺ 𝐽 ∈ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽) β†’ βˆƒπ‘  ∈ 𝒫 βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))
126, 9, 10, 11syl3anc 1368 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ βˆƒπ‘  ∈ 𝒫 βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))
13 simprr1 1218 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ 𝑧 ∈ 𝑒)
14 eqeq2 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑀 β†’ ((π‘“β€˜1) = 𝑦 ↔ (π‘“β€˜1) = 𝑀))
1514anbi2d 628 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑀 β†’ (((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦) ↔ ((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀)))
1615rexbidv 3170 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑀 β†’ (βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦) ↔ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀)))
1716elrab 3675 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ↔ (𝑀 ∈ βˆͺ 𝐽 ∧ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀)))
1817simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀))
19 simprr3 1220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ (𝐽 β†Ύt 𝑠) ∈ PConn)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ (𝐽 β†Ύt 𝑠) ∈ PConn)
21 simprr2 1219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ 𝑒 βŠ† 𝑠)
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑒 βŠ† 𝑠)
23 simprll 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑀 ∈ 𝑒)
2422, 23sseldd 3975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑀 ∈ 𝑠)
257ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝐽 ∈ Top)
26 elpwi 4601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 βˆͺ 𝐽 β†’ 𝑠 βŠ† βˆͺ 𝐽)
2726ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ 𝑠 βŠ† βˆͺ 𝐽)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑠 βŠ† βˆͺ 𝐽)
293restuni 22987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 βŠ† βˆͺ 𝐽) β†’ 𝑠 = βˆͺ (𝐽 β†Ύt 𝑠))
3025, 28, 29syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑠 = βˆͺ (𝐽 β†Ύt 𝑠))
3124, 30eleqtrd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑀 ∈ βˆͺ (𝐽 β†Ύt 𝑠))
32 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑦 ∈ 𝑒)
3322, 32sseldd 3975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑦 ∈ 𝑠)
3433, 30eleqtrd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ 𝑦 ∈ βˆͺ (𝐽 β†Ύt 𝑠))
35 eqid 2724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 βˆͺ (𝐽 β†Ύt 𝑠) = βˆͺ (𝐽 β†Ύt 𝑠)
3635pconncn 34670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽 β†Ύt 𝑠) ∈ PConn ∧ 𝑀 ∈ βˆͺ (𝐽 β†Ύt 𝑠) ∧ 𝑦 ∈ βˆͺ (𝐽 β†Ύt 𝑠)) β†’ βˆƒβ„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠))((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))
3720, 31, 34, 36syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ βˆƒβ„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠))((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))
38 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒) β†’ 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ 𝑔 ∈ (II Cn 𝐽))
4025adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ 𝐽 ∈ Top)
41 cnrest2r 23112 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top β†’ (II Cn (𝐽 β†Ύt 𝑠)) βŠ† (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (II Cn (𝐽 β†Ύt 𝑠)) βŠ† (II Cn 𝐽))
43 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)))
4442, 43sseldd 3975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ β„Ž ∈ (II Cn 𝐽))
45 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒) β†’ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))
4645ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))
4746simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (π‘”β€˜1) = 𝑀)
48 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (β„Žβ€˜0) = 𝑀)
4947, 48eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (π‘”β€˜1) = (β„Žβ€˜0))
5039, 44, 49pcocn 24865 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (𝑔(*π‘β€˜π½)β„Ž) ∈ (II Cn 𝐽))
5139, 44pco0 24862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ ((𝑔(*π‘β€˜π½)β„Ž)β€˜0) = (π‘”β€˜0))
5246simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (π‘”β€˜0) = π‘₯)
5351, 52eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ ((𝑔(*π‘β€˜π½)β„Ž)β€˜0) = π‘₯)
5439, 44pco1 24863 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ ((𝑔(*π‘β€˜π½)β„Ž)β€˜1) = (β„Žβ€˜1))
55 simprrr 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ (β„Žβ€˜1) = 𝑦)
5654, 55eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ ((𝑔(*π‘β€˜π½)β„Ž)β€˜1) = 𝑦)
57 fveq1 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*π‘β€˜π½)β„Ž) β†’ (π‘“β€˜0) = ((𝑔(*π‘β€˜π½)β„Ž)β€˜0))
5857eqeq1d 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*π‘β€˜π½)β„Ž) β†’ ((π‘“β€˜0) = π‘₯ ↔ ((𝑔(*π‘β€˜π½)β„Ž)β€˜0) = π‘₯))
59 fveq1 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*π‘β€˜π½)β„Ž) β†’ (π‘“β€˜1) = ((𝑔(*π‘β€˜π½)β„Ž)β€˜1))
6059eqeq1d 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*π‘β€˜π½)β„Ž) β†’ ((π‘“β€˜1) = 𝑦 ↔ ((𝑔(*π‘β€˜π½)β„Ž)β€˜1) = 𝑦))
6158, 60anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*π‘β€˜π½)β„Ž) β†’ (((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦) ↔ (((𝑔(*π‘β€˜π½)β„Ž)β€˜0) = π‘₯ ∧ ((𝑔(*π‘β€˜π½)β„Ž)β€˜1) = 𝑦)))
6261rspcev 3604 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*π‘β€˜π½)β„Ž) ∈ (II Cn 𝐽) ∧ (((𝑔(*π‘β€˜π½)β„Ž)β€˜0) = π‘₯ ∧ ((𝑔(*π‘β€˜π½)β„Ž)β€˜1) = 𝑦)) β†’ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6350, 53, 56, 62syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) ∧ (β„Ž ∈ (II Cn (𝐽 β†Ύt 𝑠)) ∧ ((β„Žβ€˜0) = 𝑀 ∧ (β„Žβ€˜1) = 𝑦))) β†’ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6437, 63rexlimddv 3153 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ ((𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) ∧ 𝑦 ∈ 𝑒)) β†’ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6564anassrs 467 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ (𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀)))) ∧ 𝑦 ∈ 𝑒) β†’ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6665ralrimiva 3138 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ (𝑀 ∈ 𝑒 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀)))) β†’ βˆ€π‘¦ ∈ 𝑒 βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6766anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))) β†’ βˆ€π‘¦ ∈ 𝑒 βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
6867rexlimdvaa 3148 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ (βˆƒπ‘” ∈ (II Cn 𝐽)((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀) β†’ βˆ€π‘¦ ∈ 𝑒 βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)))
6921adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ 𝑒 βŠ† 𝑠)
70 simplrl 774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ 𝑠 ∈ 𝒫 βˆͺ 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ 𝑠 βŠ† βˆͺ 𝐽)
7269, 71sstrd 3984 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ 𝑒 βŠ† βˆͺ 𝐽)
7368, 72jctild 525 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ (βˆƒπ‘” ∈ (II Cn 𝐽)((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀) β†’ (𝑒 βŠ† βˆͺ 𝐽 ∧ βˆ€π‘¦ ∈ 𝑒 βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))))
74 fveq1 6880 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 β†’ (π‘“β€˜0) = (π‘”β€˜0))
7574eqeq1d 2726 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 β†’ ((π‘“β€˜0) = π‘₯ ↔ (π‘”β€˜0) = π‘₯))
76 fveq1 6880 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 β†’ (π‘“β€˜1) = (π‘”β€˜1))
7776eqeq1d 2726 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 β†’ ((π‘“β€˜1) = 𝑀 ↔ (π‘”β€˜1) = 𝑀))
7875, 77anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 β†’ (((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀) ↔ ((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀)))
7978cbvrexvw 3227 . . . . . . . . . . . . . . . . . 18 (βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀) ↔ βˆƒπ‘” ∈ (II Cn 𝐽)((π‘”β€˜0) = π‘₯ ∧ (π‘”β€˜1) = 𝑀))
80 ssrab 4062 . . . . . . . . . . . . . . . . . 18 (𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ↔ (𝑒 βŠ† βˆͺ 𝐽 ∧ βˆ€π‘¦ ∈ 𝑒 βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)))
8173, 79, 803imtr4g 296 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ (βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑀) β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))
8218, 81syl5 34 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) ∧ 𝑀 ∈ 𝑒) β†’ (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))
8382ralrimiva 3138 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))
8413, 83jca 511 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ (𝑠 ∈ 𝒫 βˆͺ 𝐽 ∧ (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn))) β†’ (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)})))
8584expr 456 . . . . . . . . . . . . 13 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ 𝑠 ∈ 𝒫 βˆͺ 𝐽) β†’ ((𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn) β†’ (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))))
8685reximdv 3162 . . . . . . . . . . . 12 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) ∧ 𝑠 ∈ 𝒫 βˆͺ 𝐽) β†’ (βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn) β†’ βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))))
8786rexlimdva 3147 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ (βˆƒπ‘  ∈ 𝒫 βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ 𝑒 βŠ† 𝑠 ∧ (𝐽 β†Ύt 𝑠) ∈ PConn) β†’ βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (π‘₯ ∈ βˆͺ 𝐽 ∧ 𝑧 ∈ βˆͺ 𝐽)) β†’ βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)})))
8988anassrs 467 . . . . . . . . 9 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) ∧ 𝑧 ∈ βˆͺ 𝐽) β†’ βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)})))
9089ralrimiva 3138 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ βˆ€π‘§ ∈ βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)})))
911ad2antrr 723 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐽 ∈ Top)
92 ssrab2 4069 . . . . . . . . 9 {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} βŠ† βˆͺ 𝐽
933isclo2 22913 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} βŠ† βˆͺ 𝐽) β†’ ({𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ∈ (𝐽 ∩ (Clsdβ€˜π½)) ↔ βˆ€π‘§ ∈ βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))))
9491, 92, 93sylancl 585 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ({𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ∈ (𝐽 ∩ (Clsdβ€˜π½)) ↔ βˆ€π‘§ ∈ βˆͺ π½βˆƒπ‘’ ∈ 𝐽 (𝑧 ∈ 𝑒 ∧ βˆ€π‘€ ∈ 𝑒 (𝑀 ∈ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β†’ 𝑒 βŠ† {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)}))))
9590, 94mpbird 257 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ∈ (𝐽 ∩ (Clsdβ€˜π½)))
965, 95sselid 3972 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ∈ 𝐽)
97 simpr 484 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ π‘₯ ∈ βˆͺ 𝐽)
98 iitopon 24720 . . . . . . . . . 10 II ∈ (TopOnβ€˜(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ II ∈ (TopOnβ€˜(0[,]1)))
1003toptopon 22740 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
10191, 100sylib 217 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
102 cnconst2 23108 . . . . . . . . 9 ((II ∈ (TopOnβ€˜(0[,]1)) ∧ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((0[,]1) Γ— {π‘₯}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1368 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ ((0[,]1) Γ— {π‘₯}) ∈ (II Cn 𝐽))
104 0elunit 13442 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3470 . . . . . . . . . 10 π‘₯ ∈ V
106105fvconst2 7197 . . . . . . . . 9 (0 ∈ (0[,]1) β†’ (((0[,]1) Γ— {π‘₯})β€˜0) = π‘₯)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (((0[,]1) Γ— {π‘₯})β€˜0) = π‘₯)
108 1elunit 13443 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 7197 . . . . . . . . 9 (1 ∈ (0[,]1) β†’ (((0[,]1) Γ— {π‘₯})β€˜1) = π‘₯)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ (((0[,]1) Γ— {π‘₯})β€˜1) = π‘₯)
111 eqeq2 2736 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ ((π‘“β€˜1) = 𝑦 ↔ (π‘“β€˜1) = π‘₯))
112111anbi2d 628 . . . . . . . . 9 (𝑦 = π‘₯ β†’ (((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦) ↔ ((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = π‘₯)))
113 fveq1 6880 . . . . . . . . . . 11 (𝑓 = ((0[,]1) Γ— {π‘₯}) β†’ (π‘“β€˜0) = (((0[,]1) Γ— {π‘₯})β€˜0))
114113eqeq1d 2726 . . . . . . . . . 10 (𝑓 = ((0[,]1) Γ— {π‘₯}) β†’ ((π‘“β€˜0) = π‘₯ ↔ (((0[,]1) Γ— {π‘₯})β€˜0) = π‘₯))
115 fveq1 6880 . . . . . . . . . . 11 (𝑓 = ((0[,]1) Γ— {π‘₯}) β†’ (π‘“β€˜1) = (((0[,]1) Γ— {π‘₯})β€˜1))
116115eqeq1d 2726 . . . . . . . . . 10 (𝑓 = ((0[,]1) Γ— {π‘₯}) β†’ ((π‘“β€˜1) = π‘₯ ↔ (((0[,]1) Γ— {π‘₯})β€˜1) = π‘₯))
117114, 116anbi12d 630 . . . . . . . . 9 (𝑓 = ((0[,]1) Γ— {π‘₯}) β†’ (((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = π‘₯) ↔ ((((0[,]1) Γ— {π‘₯})β€˜0) = π‘₯ ∧ (((0[,]1) Γ— {π‘₯})β€˜1) = π‘₯)))
118112, 117rspc2ev 3616 . . . . . . . 8 ((π‘₯ ∈ βˆͺ 𝐽 ∧ ((0[,]1) Γ— {π‘₯}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) Γ— {π‘₯})β€˜0) = π‘₯ ∧ (((0[,]1) Γ— {π‘₯})β€˜1) = π‘₯)) β†’ βˆƒπ‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1371 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ βˆƒπ‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
120 rabn0 4377 . . . . . . 7 ({𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β‰  βˆ… ↔ βˆƒπ‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
121119, 120sylibr 233 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} β‰  βˆ…)
122 inss2 4221 . . . . . . 7 (𝐽 ∩ (Clsdβ€˜π½)) βŠ† (Clsdβ€˜π½)
123122, 95sselid 3972 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ∈ (Clsdβ€˜π½))
1243, 4, 96, 121, 123connclo 23240 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} = βˆͺ 𝐽)
125124eqcomd 2730 . . . 4 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ βˆͺ 𝐽 = {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)})
126 rabid2 3456 . . . 4 (βˆͺ 𝐽 = {𝑦 ∈ βˆͺ 𝐽 ∣ βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)} ↔ βˆ€π‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
127125, 126sylib 217 . . 3 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ βˆ€π‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
128127ralrimiva 3138 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) β†’ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦))
1293ispconn 34669 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ βˆͺ π½βˆ€π‘¦ ∈ βˆͺ π½βˆƒπ‘“ ∈ (II Cn 𝐽)((π‘“β€˜0) = π‘₯ ∧ (π‘“β€˜1) = 𝑦)))
1302, 128, 129sylanbrc 582 1 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) β†’ 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  π’« cpw 4594  {csn 4620  βˆͺ cuni 4899   Γ— cxp 5664  β€˜cfv 6533  (class class class)co 7401  0cc0 11105  1c1 11106  [,]cicc 13323   β†Ύt crest 17364  Topctop 22716  TopOnctopon 22733  Clsdccld 22841   Cn ccn 23049  Conncconn 23236  π‘›-Locally cnlly 23290  IIcii 24716  *𝑝cpco 24848  PConncpconn 34665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-nei 22923  df-cn 23052  df-cnp 23053  df-conn 23237  df-nlly 23292  df-tx 23387  df-hmeo 23580  df-xms 24147  df-ms 24148  df-tms 24149  df-ii 24718  df-pco 24853  df-pconn 34667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator