Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  connpconn Structured version   Visualization version   GIF version

Theorem connpconn 35222
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
connpconn ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)

Proof of Theorem connpconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑔 𝑠 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conntop 23304 . . 3 (𝐽 ∈ Conn → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ Top)
3 eqid 2729 . . . . . 6 𝐽 = 𝐽
4 simpll 766 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Conn)
5 inss1 4200 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
6 simplr 768 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ 𝑛-Locally PConn)
71ad2antrr 726 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ Top)
83topopn 22793 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝐽𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽𝐽)
10 simprr 772 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝑧 𝐽)
11 nlly2i 23363 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PConn ∧ 𝐽𝐽𝑧 𝐽) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
126, 9, 10, 11syl3anc 1373 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
13 simprr1 1222 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑧𝑢)
14 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑤))
1514anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1615rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1716elrab 3659 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑤 𝐽 ∧ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1817simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤))
19 simprr3 1224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝐽t 𝑠) ∈ PConn)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → (𝐽t 𝑠) ∈ PConn)
21 simprr2 1223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑢𝑠)
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑢𝑠)
23 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑢)
2422, 23sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑠)
257ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝐽 ∈ Top)
26 elpwi 4570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 𝐽𝑠 𝐽)
2726ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑠 𝐽)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 𝐽)
293restuni 23049 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → 𝑠 = (𝐽t 𝑠))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 = (𝐽t 𝑠))
3124, 30eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤 (𝐽t 𝑠))
32 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑢)
3322, 32sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑠)
3433, 30eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦 (𝐽t 𝑠))
35 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽t 𝑠) = (𝐽t 𝑠)
3635pconncn 35211 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽t 𝑠) ∈ PConn ∧ 𝑤 (𝐽t 𝑠) ∧ 𝑦 (𝐽t 𝑠)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
3720, 31, 34, 36syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
38 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝑔 ∈ (II Cn 𝐽))
4025adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝐽 ∈ Top)
41 cnrest2r 23174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
43 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn (𝐽t 𝑠)))
4442, 43sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn 𝐽))
45 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4645ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4746simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = 𝑤)
48 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘0) = 𝑤)
4947, 48eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = (‘0))
5039, 44, 49pcocn 24917 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽))
5139, 44pco0 24914 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = (𝑔‘0))
5246simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘0) = 𝑥)
5351, 52eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = 𝑥)
5439, 44pco1 24915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = (‘1))
55 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘1) = 𝑦)
5654, 55eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = 𝑦)
57 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘0) = ((𝑔(*𝑝𝐽))‘0))
5857eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘0) = 𝑥 ↔ ((𝑔(*𝑝𝐽))‘0) = 𝑥))
59 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘1) = ((𝑔(*𝑝𝐽))‘1))
6059eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘1) = 𝑦 ↔ ((𝑔(*𝑝𝐽))‘1) = 𝑦))
6158, 60anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*𝑝𝐽)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)))
6261rspcev 3588 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6350, 53, 56, 62syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6437, 63rexlimddv 3140 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6564anassrs 467 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) ∧ 𝑦𝑢) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6665ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6766anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6867rexlimdvaa 3135 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
6921adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢𝑠)
70 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 ∈ 𝒫 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 𝐽)
7269, 71sstrd 3957 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢 𝐽)
7368, 72jctild 525 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))))
74 fveq1 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0))
7574eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘0) = 𝑥 ↔ (𝑔‘0) = 𝑥))
76 fveq1 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘1) = (𝑔‘1))
7776eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘1) = 𝑤 ↔ (𝑔‘1) = 𝑤))
7875, 77anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))
7978cbvrexvw 3216 . . . . . . . . . . . . . . . . . 18 (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
80 ssrab 4036 . . . . . . . . . . . . . . . . . 18 (𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8173, 79, 803imtr4g 296 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8218, 81syl5 34 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8382ralrimiva 3125 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8413, 83jca 511 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8584expr 456 . . . . . . . . . . . . 13 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → ((𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8685reximdv 3148 . . . . . . . . . . . 12 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → (∃𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8786rexlimdva 3134 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → (∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8988anassrs 467 . . . . . . . . 9 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) ∧ 𝑧 𝐽) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
9089ralrimiva 3125 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
911ad2antrr 726 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
92 ssrab2 4043 . . . . . . . . 9 {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽
933isclo2 22975 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9491, 92, 93sylancl 586 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9590, 94mpbird 257 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)))
965, 95sselid 3944 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ 𝐽)
97 simpr 484 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝑥 𝐽)
98 iitopon 24772 . . . . . . . . . 10 II ∈ (TopOn‘(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → II ∈ (TopOn‘(0[,]1)))
1003toptopon 22804 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
10191, 100sylib 218 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ (TopOn‘ 𝐽))
102 cnconst2 23170 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
104 0elunit 13430 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
106105fvconst2 7178 . . . . . . . . 9 (0 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘0) = 𝑥)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘0) = 𝑥)
108 1elunit 13431 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 7178 . . . . . . . . 9 (1 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘1) = 𝑥)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘1) = 𝑥)
111 eqeq2 2741 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑥))
112111anbi2d 630 . . . . . . . . 9 (𝑦 = 𝑥 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥)))
113 fveq1 6857 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘0) = (((0[,]1) × {𝑥})‘0))
114113eqeq1d 2731 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘0) = 𝑥 ↔ (((0[,]1) × {𝑥})‘0) = 𝑥))
115 fveq1 6857 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘1) = (((0[,]1) × {𝑥})‘1))
116115eqeq1d 2731 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘1) = 𝑥 ↔ (((0[,]1) × {𝑥})‘1) = 𝑥))
117114, 116anbi12d 632 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑥}) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥) ↔ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)))
118112, 117rspc2ev 3601 . . . . . . . 8 ((𝑥 𝐽 ∧ ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1376 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
120 rabn0 4352 . . . . . . 7 ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅ ↔ ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
121119, 120sylibr 234 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅)
122 inss2 4201 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
123122, 95sselid 3944 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (Clsd‘𝐽))
1243, 4, 96, 121, 123connclo 23302 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} = 𝐽)
125124eqcomd 2735 . . . 4 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})
126 rabid2 3439 . . . 4 ( 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
127125, 126sylib 218 . . 3 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
128127ralrimiva 3125 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
1293ispconn 35210 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1302, 128, 129sylanbrc 583 1 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   × cxp 5636  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  [,]cicc 13309  t crest 17383  Topctop 22780  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  Conncconn 23298  𝑛-Locally cnlly 23352  IIcii 24768  *𝑝cpco 24900  PConncpconn 35206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-nei 22985  df-cn 23114  df-cnp 23115  df-conn 23299  df-nlly 23354  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-ii 24770  df-pco 24905  df-pconn 35208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator