Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  connpconn Structured version   Visualization version   GIF version

Theorem connpconn 33206
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
connpconn ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)

Proof of Theorem connpconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑔 𝑠 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conntop 22577 . . 3 (𝐽 ∈ Conn → 𝐽 ∈ Top)
21adantr 481 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ Top)
3 eqid 2739 . . . . . 6 𝐽 = 𝐽
4 simpll 764 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Conn)
5 inss1 4163 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
6 simplr 766 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ 𝑛-Locally PConn)
71ad2antrr 723 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ Top)
83topopn 22064 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝐽𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽𝐽)
10 simprr 770 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝑧 𝐽)
11 nlly2i 22636 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PConn ∧ 𝐽𝐽𝑧 𝐽) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
126, 9, 10, 11syl3anc 1370 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
13 simprr1 1220 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑧𝑢)
14 eqeq2 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑤))
1514anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1615rexbidv 3227 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1716elrab 3625 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑤 𝐽 ∧ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1817simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤))
19 simprr3 1222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝐽t 𝑠) ∈ PConn)
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → (𝐽t 𝑠) ∈ PConn)
21 simprr2 1221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑢𝑠)
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑢𝑠)
23 simprll 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑢)
2422, 23sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑠)
257ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝐽 ∈ Top)
26 elpwi 4543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 𝐽𝑠 𝐽)
2726ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑠 𝐽)
2827adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 𝐽)
293restuni 22322 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → 𝑠 = (𝐽t 𝑠))
3025, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 = (𝐽t 𝑠))
3124, 30eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤 (𝐽t 𝑠))
32 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑢)
3322, 32sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑠)
3433, 30eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦 (𝐽t 𝑠))
35 eqid 2739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽t 𝑠) = (𝐽t 𝑠)
3635pconncn 33195 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽t 𝑠) ∈ PConn ∧ 𝑤 (𝐽t 𝑠) ∧ 𝑦 (𝐽t 𝑠)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
3720, 31, 34, 36syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
38 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝑔 ∈ (II Cn 𝐽))
4025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝐽 ∈ Top)
41 cnrest2r 22447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
43 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn (𝐽t 𝑠)))
4442, 43sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn 𝐽))
45 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4645ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4746simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = 𝑤)
48 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘0) = 𝑤)
4947, 48eqtr4d 2782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = (‘0))
5039, 44, 49pcocn 24189 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽))
5139, 44pco0 24186 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = (𝑔‘0))
5246simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘0) = 𝑥)
5351, 52eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = 𝑥)
5439, 44pco1 24187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = (‘1))
55 simprrr 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘1) = 𝑦)
5654, 55eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = 𝑦)
57 fveq1 6782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘0) = ((𝑔(*𝑝𝐽))‘0))
5857eqeq1d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘0) = 𝑥 ↔ ((𝑔(*𝑝𝐽))‘0) = 𝑥))
59 fveq1 6782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘1) = ((𝑔(*𝑝𝐽))‘1))
6059eqeq1d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘1) = 𝑦 ↔ ((𝑔(*𝑝𝐽))‘1) = 𝑦))
6158, 60anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*𝑝𝐽)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)))
6261rspcev 3562 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6350, 53, 56, 62syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6437, 63rexlimddv 3221 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6564anassrs 468 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) ∧ 𝑦𝑢) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6665ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6766anassrs 468 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6867rexlimdvaa 3215 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
6921adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢𝑠)
70 simplrl 774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 ∈ 𝒫 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 𝐽)
7269, 71sstrd 3932 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢 𝐽)
7368, 72jctild 526 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))))
74 fveq1 6782 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0))
7574eqeq1d 2741 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘0) = 𝑥 ↔ (𝑔‘0) = 𝑥))
76 fveq1 6782 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘1) = (𝑔‘1))
7776eqeq1d 2741 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘1) = 𝑤 ↔ (𝑔‘1) = 𝑤))
7875, 77anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))
7978cbvrexvw 3385 . . . . . . . . . . . . . . . . . 18 (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
80 ssrab 4007 . . . . . . . . . . . . . . . . . 18 (𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8173, 79, 803imtr4g 296 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8218, 81syl5 34 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8382ralrimiva 3104 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8413, 83jca 512 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8584expr 457 . . . . . . . . . . . . 13 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → ((𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8685reximdv 3203 . . . . . . . . . . . 12 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → (∃𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8786rexlimdva 3214 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → (∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8988anassrs 468 . . . . . . . . 9 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) ∧ 𝑧 𝐽) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
9089ralrimiva 3104 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
911ad2antrr 723 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
92 ssrab2 4014 . . . . . . . . 9 {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽
933isclo2 22248 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9491, 92, 93sylancl 586 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9590, 94mpbird 256 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)))
965, 95sselid 3920 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ 𝐽)
97 simpr 485 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝑥 𝐽)
98 iitopon 24051 . . . . . . . . . 10 II ∈ (TopOn‘(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → II ∈ (TopOn‘(0[,]1)))
1003toptopon 22075 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
10191, 100sylib 217 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ (TopOn‘ 𝐽))
102 cnconst2 22443 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1370 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
104 0elunit 13210 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3437 . . . . . . . . . 10 𝑥 ∈ V
106105fvconst2 7088 . . . . . . . . 9 (0 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘0) = 𝑥)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘0) = 𝑥)
108 1elunit 13211 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 7088 . . . . . . . . 9 (1 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘1) = 𝑥)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘1) = 𝑥)
111 eqeq2 2751 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑥))
112111anbi2d 629 . . . . . . . . 9 (𝑦 = 𝑥 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥)))
113 fveq1 6782 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘0) = (((0[,]1) × {𝑥})‘0))
114113eqeq1d 2741 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘0) = 𝑥 ↔ (((0[,]1) × {𝑥})‘0) = 𝑥))
115 fveq1 6782 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘1) = (((0[,]1) × {𝑥})‘1))
116115eqeq1d 2741 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘1) = 𝑥 ↔ (((0[,]1) × {𝑥})‘1) = 𝑥))
117114, 116anbi12d 631 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑥}) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥) ↔ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)))
118112, 117rspc2ev 3573 . . . . . . . 8 ((𝑥 𝐽 ∧ ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1373 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
120 rabn0 4320 . . . . . . 7 ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅ ↔ ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
121119, 120sylibr 233 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅)
122 inss2 4164 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
123122, 95sselid 3920 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (Clsd‘𝐽))
1243, 4, 96, 121, 123connclo 22575 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} = 𝐽)
125124eqcomd 2745 . . . 4 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})
126 rabid2 3315 . . . 4 ( 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
127125, 126sylib 217 . . 3 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
128127ralrimiva 3104 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
1293ispconn 33194 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1302, 128, 129sylanbrc 583 1 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  cin 3887  wss 3888  c0 4257  𝒫 cpw 4534  {csn 4562   cuni 4840   × cxp 5588  cfv 6437  (class class class)co 7284  0cc0 10880  1c1 10881  [,]cicc 13091  t crest 17140  Topctop 22051  TopOnctopon 22068  Clsdccld 22176   Cn ccn 22384  Conncconn 22571  𝑛-Locally cnlly 22625  IIcii 24047  *𝑝cpco 24172  PConncpconn 33190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-nei 22258  df-cn 22387  df-cnp 22388  df-conn 22572  df-nlly 22627  df-tx 22722  df-hmeo 22915  df-xms 23482  df-ms 23483  df-tms 23484  df-ii 24049  df-pco 24177  df-pconn 33192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator