Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  connpconn Structured version   Visualization version   GIF version

Theorem connpconn 34690
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
connpconn ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)

Proof of Theorem connpconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑔 𝑠 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conntop 23241 . . 3 (𝐽 ∈ Conn → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ Top)
3 eqid 2731 . . . . . 6 𝐽 = 𝐽
4 simpll 764 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Conn)
5 inss1 4228 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
6 simplr 766 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ 𝑛-Locally PConn)
71ad2antrr 723 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ Top)
83topopn 22728 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝐽𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽𝐽)
10 simprr 770 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝑧 𝐽)
11 nlly2i 23300 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PConn ∧ 𝐽𝐽𝑧 𝐽) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
126, 9, 10, 11syl3anc 1370 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))
13 simprr1 1220 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑧𝑢)
14 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑤))
1514anbi2d 628 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1615rexbidv 3177 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1716elrab 3683 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑤 𝐽 ∧ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1817simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤))
19 simprr3 1222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝐽t 𝑠) ∈ PConn)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → (𝐽t 𝑠) ∈ PConn)
21 simprr2 1221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑢𝑠)
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑢𝑠)
23 simprll 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑢)
2422, 23sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑠)
257ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝐽 ∈ Top)
26 elpwi 4609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 𝐽𝑠 𝐽)
2726ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → 𝑠 𝐽)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 𝐽)
293restuni 22986 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → 𝑠 = (𝐽t 𝑠))
3025, 28, 29syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 = (𝐽t 𝑠))
3124, 30eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤 (𝐽t 𝑠))
32 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑢)
3322, 32sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑠)
3433, 30eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦 (𝐽t 𝑠))
35 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽t 𝑠) = (𝐽t 𝑠)
3635pconncn 34679 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽t 𝑠) ∈ PConn ∧ 𝑤 (𝐽t 𝑠) ∧ 𝑦 (𝐽t 𝑠)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
3720, 31, 34, 36syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
38 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝑔 ∈ (II Cn 𝐽))
4025adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝐽 ∈ Top)
41 cnrest2r 23111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
43 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn (𝐽t 𝑠)))
4442, 43sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn 𝐽))
45 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4645ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4746simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = 𝑤)
48 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘0) = 𝑤)
4947, 48eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = (‘0))
5039, 44, 49pcocn 24864 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽))
5139, 44pco0 24861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = (𝑔‘0))
5246simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘0) = 𝑥)
5351, 52eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = 𝑥)
5439, 44pco1 24862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = (‘1))
55 simprrr 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘1) = 𝑦)
5654, 55eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = 𝑦)
57 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘0) = ((𝑔(*𝑝𝐽))‘0))
5857eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘0) = 𝑥 ↔ ((𝑔(*𝑝𝐽))‘0) = 𝑥))
59 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘1) = ((𝑔(*𝑝𝐽))‘1))
6059eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘1) = 𝑦 ↔ ((𝑔(*𝑝𝐽))‘1) = 𝑦))
6158, 60anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*𝑝𝐽)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)))
6261rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6350, 53, 56, 62syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6437, 63rexlimddv 3160 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6564anassrs 467 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) ∧ 𝑦𝑢) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6665ralrimiva 3145 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6766anassrs 467 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6867rexlimdvaa 3155 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
6921adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢𝑠)
70 simplrl 774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 ∈ 𝒫 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑠 𝐽)
7269, 71sstrd 3992 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → 𝑢 𝐽)
7368, 72jctild 525 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))))
74 fveq1 6890 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0))
7574eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘0) = 𝑥 ↔ (𝑔‘0) = 𝑥))
76 fveq1 6890 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘1) = (𝑔‘1))
7776eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘1) = 𝑤 ↔ (𝑔‘1) = 𝑤))
7875, 77anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))
7978cbvrexvw 3234 . . . . . . . . . . . . . . . . . 18 (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
80 ssrab 4070 . . . . . . . . . . . . . . . . . 18 (𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8173, 79, 803imtr4g 296 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8218, 81syl5 34 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) ∧ 𝑤𝑢) → (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8382ralrimiva 3145 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8413, 83jca 511 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn))) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8584expr 456 . . . . . . . . . . . . 13 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → ((𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8685reximdv 3169 . . . . . . . . . . . 12 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → (∃𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8786rexlimdva 3154 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → (∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PConn) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8988anassrs 467 . . . . . . . . 9 ((((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) ∧ 𝑧 𝐽) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
9089ralrimiva 3145 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
911ad2antrr 723 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
92 ssrab2 4077 . . . . . . . . 9 {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽
933isclo2 22912 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9491, 92, 93sylancl 585 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9590, 94mpbird 257 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)))
965, 95sselid 3980 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ 𝐽)
97 simpr 484 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝑥 𝐽)
98 iitopon 24719 . . . . . . . . . 10 II ∈ (TopOn‘(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → II ∈ (TopOn‘(0[,]1)))
1003toptopon 22739 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
10191, 100sylib 217 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 ∈ (TopOn‘ 𝐽))
102 cnconst2 23107 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1370 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
104 0elunit 13453 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3477 . . . . . . . . . 10 𝑥 ∈ V
106105fvconst2 7207 . . . . . . . . 9 (0 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘0) = 𝑥)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘0) = 𝑥)
108 1elunit 13454 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 7207 . . . . . . . . 9 (1 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘1) = 𝑥)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘1) = 𝑥)
111 eqeq2 2743 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑥))
112111anbi2d 628 . . . . . . . . 9 (𝑦 = 𝑥 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥)))
113 fveq1 6890 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘0) = (((0[,]1) × {𝑥})‘0))
114113eqeq1d 2733 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘0) = 𝑥 ↔ (((0[,]1) × {𝑥})‘0) = 𝑥))
115 fveq1 6890 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘1) = (((0[,]1) × {𝑥})‘1))
116115eqeq1d 2733 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘1) = 𝑥 ↔ (((0[,]1) × {𝑥})‘1) = 𝑥))
117114, 116anbi12d 630 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑥}) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥) ↔ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)))
118112, 117rspc2ev 3624 . . . . . . . 8 ((𝑥 𝐽 ∧ ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1373 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
120 rabn0 4385 . . . . . . 7 ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅ ↔ ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
121119, 120sylibr 233 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅)
122 inss2 4229 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
123122, 95sselid 3980 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (Clsd‘𝐽))
1243, 4, 96, 121, 123connclo 23239 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} = 𝐽)
125124eqcomd 2737 . . . 4 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})
126 rabid2 3463 . . . 4 ( 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
127125, 126sylib 217 . . 3 (((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) ∧ 𝑥 𝐽) → ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
128127ralrimiva 3145 . 2 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
1293ispconn 34678 . 2 (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1302, 128, 129sylanbrc 582 1 ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   × cxp 5674  cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117  [,]cicc 13334  t crest 17373  Topctop 22715  TopOnctopon 22732  Clsdccld 22840   Cn ccn 23048  Conncconn 23235  𝑛-Locally cnlly 23289  IIcii 24715  *𝑝cpco 24847  PConncpconn 34674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-icc 13338  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-nei 22922  df-cn 23051  df-cnp 23052  df-conn 23236  df-nlly 23291  df-tx 23386  df-hmeo 23579  df-xms 24146  df-ms 24147  df-tms 24148  df-ii 24717  df-pco 24852  df-pconn 34676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator