![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conncompss | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompss | ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑋) | |
2 | conntop 21629 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝑇) ∈ Conn → (𝐽 ↾t 𝑇) ∈ Top) | |
3 | 2 | 3ad2ant3 1126 | . . . . . 6 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐽 ↾t 𝑇) ∈ Top) |
4 | restrcl 21369 | . . . . . . 7 ⊢ ((𝐽 ↾t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V)) | |
5 | 4 | simprd 491 | . . . . . 6 ⊢ ((𝐽 ↾t 𝑇) ∈ Top → 𝑇 ∈ V) |
6 | elpwg 4386 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) | |
7 | 3, 5, 6 | 3syl 18 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) |
8 | 1, 7 | mpbird 249 | . . . 4 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋) |
9 | 3simpc 1143 | . . . 4 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn)) | |
10 | eleq2 2847 | . . . . . 6 ⊢ (𝑦 = 𝑇 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇)) | |
11 | oveq2 6930 | . . . . . . 7 ⊢ (𝑦 = 𝑇 → (𝐽 ↾t 𝑦) = (𝐽 ↾t 𝑇)) | |
12 | 11 | eleq1d 2843 | . . . . . 6 ⊢ (𝑦 = 𝑇 → ((𝐽 ↾t 𝑦) ∈ Conn ↔ (𝐽 ↾t 𝑇) ∈ Conn)) |
13 | 10, 12 | anbi12d 624 | . . . . 5 ⊢ (𝑦 = 𝑇 → ((𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn) ↔ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
14 | eleq2 2847 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | |
15 | oveq2 6930 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) | |
16 | 15 | eleq1d 2843 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t 𝑦) ∈ Conn)) |
17 | 14, 16 | anbi12d 624 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
18 | 17 | cbvrabv 3395 | . . . . 5 ⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn)} |
19 | 13, 18 | elrab2 3575 | . . . 4 ⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
20 | 8, 9, 19 | sylanbrc 578 | . . 3 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
21 | elssuni 4702 | . . 3 ⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | |
22 | 20, 21 | syl 17 | . 2 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
24 | 22, 23 | syl6sseqr 3870 | 1 ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 {crab 3093 Vcvv 3397 ⊆ wss 3791 𝒫 cpw 4378 ∪ cuni 4671 (class class class)co 6922 ↾t crest 16467 Topctop 21105 Conncconn 21623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-rest 16469 df-top 21106 df-conn 21624 |
This theorem is referenced by: conncompcld 21646 tgpconncompeqg 22323 tgpconncomp 22324 |
Copyright terms: Public domain | W3C validator |