MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   GIF version

Theorem conncompss 23327
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompss ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑋)
2 conntop 23311 . . . . . . 7 ((𝐽t 𝑇) ∈ Conn → (𝐽t 𝑇) ∈ Top)
323ad2ant3 1135 . . . . . 6 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐽t 𝑇) ∈ Top)
4 restrcl 23051 . . . . . . 7 ((𝐽t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V))
54simprd 495 . . . . . 6 ((𝐽t 𝑇) ∈ Top → 𝑇 ∈ V)
6 elpwg 4569 . . . . . 6 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
73, 5, 63syl 18 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
81, 7mpbird 257 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋)
9 3simpc 1150 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn))
10 eleq2 2818 . . . . . 6 (𝑦 = 𝑇 → (𝐴𝑦𝐴𝑇))
11 oveq2 7398 . . . . . . 7 (𝑦 = 𝑇 → (𝐽t 𝑦) = (𝐽t 𝑇))
1211eleq1d 2814 . . . . . 6 (𝑦 = 𝑇 → ((𝐽t 𝑦) ∈ Conn ↔ (𝐽t 𝑇) ∈ Conn))
1310, 12anbi12d 632 . . . . 5 (𝑦 = 𝑇 → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) ↔ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
14 eleq2 2818 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
15 oveq2 7398 . . . . . . . 8 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
1615eleq1d 2814 . . . . . . 7 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
1714, 16anbi12d 632 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1817cbvrabv 3419 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)}
1913, 18elrab2 3665 . . . 4 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
208, 9, 19sylanbrc 583 . . 3 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
21 elssuni 4904 . . 3 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
2220, 21syl 17 . 2 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23sseqtrrdi 3991 1 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874  (class class class)co 7390  t crest 17390  Topctop 22787  Conncconn 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rest 17392  df-top 22788  df-conn 23306
This theorem is referenced by:  conncompcld  23328  tgpconncompeqg  24006  tgpconncomp  24007
  Copyright terms: Public domain W3C validator