MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   GIF version

Theorem conncompss 22038
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompss ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑋)
2 conntop 22022 . . . . . . 7 ((𝐽t 𝑇) ∈ Conn → (𝐽t 𝑇) ∈ Top)
323ad2ant3 1132 . . . . . 6 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐽t 𝑇) ∈ Top)
4 restrcl 21762 . . . . . . 7 ((𝐽t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V))
54simprd 499 . . . . . 6 ((𝐽t 𝑇) ∈ Top → 𝑇 ∈ V)
6 elpwg 4500 . . . . . 6 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
73, 5, 63syl 18 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
81, 7mpbird 260 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋)
9 3simpc 1147 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn))
10 eleq2 2878 . . . . . 6 (𝑦 = 𝑇 → (𝐴𝑦𝐴𝑇))
11 oveq2 7143 . . . . . . 7 (𝑦 = 𝑇 → (𝐽t 𝑦) = (𝐽t 𝑇))
1211eleq1d 2874 . . . . . 6 (𝑦 = 𝑇 → ((𝐽t 𝑦) ∈ Conn ↔ (𝐽t 𝑇) ∈ Conn))
1310, 12anbi12d 633 . . . . 5 (𝑦 = 𝑇 → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) ↔ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
14 eleq2 2878 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
15 oveq2 7143 . . . . . . . 8 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
1615eleq1d 2874 . . . . . . 7 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
1714, 16anbi12d 633 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1817cbvrabv 3439 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)}
1913, 18elrab2 3631 . . . 4 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
208, 9, 19sylanbrc 586 . . 3 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
21 elssuni 4830 . . 3 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
2220, 21syl 17 . 2 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23sseqtrrdi 3966 1 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   cuni 4800  (class class class)co 7135  t crest 16686  Topctop 21498  Conncconn 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-rest 16688  df-top 21499  df-conn 22017
This theorem is referenced by:  conncompcld  22039  tgpconncompeqg  22717  tgpconncomp  22718
  Copyright terms: Public domain W3C validator