| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . . . 5
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑋) | 
| 2 |  | conntop 23426 | . . . . . . 7
⊢ ((𝐽 ↾t 𝑇) ∈ Conn → (𝐽 ↾t 𝑇) ∈ Top) | 
| 3 | 2 | 3ad2ant3 1135 | . . . . . 6
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐽 ↾t 𝑇) ∈ Top) | 
| 4 |  | restrcl 23166 | . . . . . . 7
⊢ ((𝐽 ↾t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V)) | 
| 5 | 4 | simprd 495 | . . . . . 6
⊢ ((𝐽 ↾t 𝑇) ∈ Top → 𝑇 ∈ V) | 
| 6 |  | elpwg 4602 | . . . . . 6
⊢ (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) | 
| 7 | 3, 5, 6 | 3syl 18 | . . . . 5
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) | 
| 8 | 1, 7 | mpbird 257 | . . . 4
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋) | 
| 9 |  | 3simpc 1150 | . . . 4
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn)) | 
| 10 |  | eleq2 2829 | . . . . . 6
⊢ (𝑦 = 𝑇 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇)) | 
| 11 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑦 = 𝑇 → (𝐽 ↾t 𝑦) = (𝐽 ↾t 𝑇)) | 
| 12 | 11 | eleq1d 2825 | . . . . . 6
⊢ (𝑦 = 𝑇 → ((𝐽 ↾t 𝑦) ∈ Conn ↔ (𝐽 ↾t 𝑇) ∈ Conn)) | 
| 13 | 10, 12 | anbi12d 632 | . . . . 5
⊢ (𝑦 = 𝑇 → ((𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn) ↔ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) | 
| 14 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) | 
| 15 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) | 
| 16 | 15 | eleq1d 2825 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t 𝑦) ∈ Conn)) | 
| 17 | 14, 16 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) | 
| 18 | 17 | cbvrabv 3446 | . . . . 5
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn)} | 
| 19 | 13, 18 | elrab2 3694 | . . . 4
⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) | 
| 20 | 8, 9, 19 | sylanbrc 583 | . . 3
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | 
| 21 |  | elssuni 4936 | . . 3
⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | 
| 22 | 20, 21 | syl 17 | . 2
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | 
| 23 |  | conncomp.2 | . 2
⊢ 𝑆 = ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | 
| 24 | 22, 23 | sseqtrrdi 4024 | 1
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |