MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   GIF version

Theorem conncompss 23346
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompss ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑋)
2 conntop 23330 . . . . . . 7 ((𝐽t 𝑇) ∈ Conn → (𝐽t 𝑇) ∈ Top)
323ad2ant3 1135 . . . . . 6 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐽t 𝑇) ∈ Top)
4 restrcl 23070 . . . . . . 7 ((𝐽t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V))
54simprd 495 . . . . . 6 ((𝐽t 𝑇) ∈ Top → 𝑇 ∈ V)
6 elpwg 4553 . . . . . 6 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
73, 5, 63syl 18 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
81, 7mpbird 257 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋)
9 3simpc 1150 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn))
10 eleq2 2820 . . . . . 6 (𝑦 = 𝑇 → (𝐴𝑦𝐴𝑇))
11 oveq2 7354 . . . . . . 7 (𝑦 = 𝑇 → (𝐽t 𝑦) = (𝐽t 𝑇))
1211eleq1d 2816 . . . . . 6 (𝑦 = 𝑇 → ((𝐽t 𝑦) ∈ Conn ↔ (𝐽t 𝑇) ∈ Conn))
1310, 12anbi12d 632 . . . . 5 (𝑦 = 𝑇 → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) ↔ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
14 eleq2 2820 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
15 oveq2 7354 . . . . . . . 8 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
1615eleq1d 2816 . . . . . . 7 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
1714, 16anbi12d 632 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1817cbvrabv 3405 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)}
1913, 18elrab2 3650 . . . 4 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
208, 9, 19sylanbrc 583 . . 3 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
21 elssuni 4889 . . 3 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
2220, 21syl 17 . 2 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23sseqtrrdi 3976 1 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  𝒫 cpw 4550   cuni 4859  (class class class)co 7346  t crest 17321  Topctop 22806  Conncconn 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-rest 17323  df-top 22807  df-conn 23325
This theorem is referenced by:  conncompcld  23347  tgpconncompeqg  24025  tgpconncomp  24026
  Copyright terms: Public domain W3C validator