MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   GIF version

Theorem conncompss 22492
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompss ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑋)
2 conntop 22476 . . . . . . 7 ((𝐽t 𝑇) ∈ Conn → (𝐽t 𝑇) ∈ Top)
323ad2ant3 1133 . . . . . 6 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐽t 𝑇) ∈ Top)
4 restrcl 22216 . . . . . . 7 ((𝐽t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V))
54simprd 495 . . . . . 6 ((𝐽t 𝑇) ∈ Top → 𝑇 ∈ V)
6 elpwg 4533 . . . . . 6 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
73, 5, 63syl 18 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
81, 7mpbird 256 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋)
9 3simpc 1148 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn))
10 eleq2 2827 . . . . . 6 (𝑦 = 𝑇 → (𝐴𝑦𝐴𝑇))
11 oveq2 7263 . . . . . . 7 (𝑦 = 𝑇 → (𝐽t 𝑦) = (𝐽t 𝑇))
1211eleq1d 2823 . . . . . 6 (𝑦 = 𝑇 → ((𝐽t 𝑦) ∈ Conn ↔ (𝐽t 𝑇) ∈ Conn))
1310, 12anbi12d 630 . . . . 5 (𝑦 = 𝑇 → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) ↔ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
14 eleq2 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
15 oveq2 7263 . . . . . . . 8 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
1615eleq1d 2823 . . . . . . 7 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
1714, 16anbi12d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1817cbvrabv 3416 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)}
1913, 18elrab2 3620 . . . 4 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
208, 9, 19sylanbrc 582 . . 3 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
21 elssuni 4868 . . 3 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
2220, 21syl 17 . 2 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23sseqtrrdi 3968 1 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836  (class class class)co 7255  t crest 17048  Topctop 21950  Conncconn 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-top 21951  df-conn 22471
This theorem is referenced by:  conncompcld  22493  tgpconncompeqg  23171  tgpconncomp  23172
  Copyright terms: Public domain W3C validator