MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopconn Structured version   Visualization version   GIF version

Theorem qtopconn 22841
Description: A quotient of a connected space is connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopconn ((𝐽 ∈ Conn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Conn)

Proof of Theorem qtopconn
StepHypRef Expression
1 qtopcmp.1 . 2 𝑋 = 𝐽
2 conntop 22549 . 2 (𝐽 ∈ Conn → 𝐽 ∈ Top)
3 eqid 2739 . . 3 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
43cnconn 22554 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Conn)
51, 2, 4qtopcmplem 22839 1 ((𝐽 ∈ Conn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109   cuni 4844   Fn wfn 6425  (class class class)co 7268   qTop cqtop 17195  Conncconn 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-qtop 17199  df-top 22024  df-topon 22041  df-cld 22151  df-cn 22359  df-conn 22544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator