MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildr Structured version   Visualization version   GIF version

Theorem ufildr 23655
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Hypothesis
Ref Expression
ufildr.1 𝐽 = (𝐹 ∪ {∅})
Assertion
Ref Expression
ufildr (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)

Proof of Theorem ufildr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4941 . . . . . 6 (𝑥𝐽𝑥 𝐽)
2 ufilfil 23628 . . . . . . . . 9 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filunibas 23605 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
42, 3syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
5 ufildr.1 . . . . . . . . . 10 𝐽 = (𝐹 ∪ {∅})
65unieqi 4921 . . . . . . . . 9 𝐽 = (𝐹 ∪ {∅})
7 uniun 4934 . . . . . . . . . 10 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
8 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
98unisn 4930 . . . . . . . . . . 11 {∅} = ∅
109uneq2i 4160 . . . . . . . . . 10 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
11 un0 4390 . . . . . . . . . 10 ( 𝐹 ∪ ∅) = 𝐹
127, 10, 113eqtri 2764 . . . . . . . . 9 (𝐹 ∪ {∅}) = 𝐹
136, 12eqtr2i 2761 . . . . . . . 8 𝐹 = 𝐽
144, 13eqtr3di 2787 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝑋 = 𝐽)
1514sseq2d 4014 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋𝑥 𝐽))
161, 15imbitrrid 245 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝐽𝑥𝑋))
17 eqid 2732 . . . . . . 7 𝐽 = 𝐽
1817cldss 22753 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
1918, 15imbitrrid 245 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋))
2016, 19jaod 857 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝑋))
21 ufilss 23629 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
22 ssun1 4172 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {∅})
2322, 5sseqtrri 4019 . . . . . . . . 9 𝐹𝐽
2423a1i 11 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹𝐽)
2524sseld 3981 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹𝑥𝐽))
2624sseld 3981 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐽))
27 filconn 23607 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
28 conntop 23141 . . . . . . . . . . . 12 ((𝐹 ∪ {∅}) ∈ Conn → (𝐹 ∪ {∅}) ∈ Top)
292, 27, 283syl 18 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈ Top)
305, 29eqeltrid 2837 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top)
3115biimpa 477 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝑥 𝐽)
3217iscld2 22752 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3330, 31, 32syl2an2r 683 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3414difeq1d 4121 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝑋𝑥) = ( 𝐽𝑥))
3534eleq1d 2818 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3635adantr 481 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3733, 36bitr4d 281 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ 𝐽))
3826, 37sylibrd 258 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹𝑥 ∈ (Clsd‘𝐽)))
3925, 38orim12d 963 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4021, 39mpd 15 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
4140ex 413 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋 → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4220, 41impbid 211 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥𝑋))
43 elun 4148 . . 3 (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
44 velpw 4607 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
4542, 43, 443bitr4g 313 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋))
4645eqrdv 2730 1 (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  cdif 3945  cun 3946  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908  cfv 6543  Topctop 22615  Clsdccld 22740  Conncconn 23135  Filcfil 23569  UFilcufil 23623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-fbas 21141  df-top 22616  df-cld 22743  df-conn 23136  df-fil 23570  df-ufil 23625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator