MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildr Structured version   Visualization version   GIF version

Theorem ufildr 23874
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Hypothesis
Ref Expression
ufildr.1 𝐽 = (𝐹 ∪ {∅})
Assertion
Ref Expression
ufildr (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)

Proof of Theorem ufildr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4918 . . . . . 6 (𝑥𝐽𝑥 𝐽)
2 ufilfil 23847 . . . . . . . . 9 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filunibas 23824 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
42, 3syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
5 ufildr.1 . . . . . . . . . 10 𝐽 = (𝐹 ∪ {∅})
65unieqi 4900 . . . . . . . . 9 𝐽 = (𝐹 ∪ {∅})
7 uniun 4911 . . . . . . . . . 10 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
8 0ex 5282 . . . . . . . . . . . 12 ∅ ∈ V
98unisn 4907 . . . . . . . . . . 11 {∅} = ∅
109uneq2i 4145 . . . . . . . . . 10 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
11 un0 4374 . . . . . . . . . 10 ( 𝐹 ∪ ∅) = 𝐹
127, 10, 113eqtri 2763 . . . . . . . . 9 (𝐹 ∪ {∅}) = 𝐹
136, 12eqtr2i 2760 . . . . . . . 8 𝐹 = 𝐽
144, 13eqtr3di 2786 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝑋 = 𝐽)
1514sseq2d 3996 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋𝑥 𝐽))
161, 15imbitrrid 246 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝐽𝑥𝑋))
17 eqid 2736 . . . . . . 7 𝐽 = 𝐽
1817cldss 22972 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
1918, 15imbitrrid 246 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋))
2016, 19jaod 859 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝑋))
21 ufilss 23848 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
22 ssun1 4158 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {∅})
2322, 5sseqtrri 4013 . . . . . . . . 9 𝐹𝐽
2423a1i 11 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹𝐽)
2524sseld 3962 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹𝑥𝐽))
2624sseld 3962 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐽))
27 filconn 23826 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
28 conntop 23360 . . . . . . . . . . . 12 ((𝐹 ∪ {∅}) ∈ Conn → (𝐹 ∪ {∅}) ∈ Top)
292, 27, 283syl 18 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈ Top)
305, 29eqeltrid 2839 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top)
3115biimpa 476 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝑥 𝐽)
3217iscld2 22971 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3330, 31, 32syl2an2r 685 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3414difeq1d 4105 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝑋𝑥) = ( 𝐽𝑥))
3534eleq1d 2820 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3635adantr 480 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3733, 36bitr4d 282 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ 𝐽))
3826, 37sylibrd 259 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹𝑥 ∈ (Clsd‘𝐽)))
3925, 38orim12d 966 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4021, 39mpd 15 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
4140ex 412 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋 → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4220, 41impbid 212 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥𝑋))
43 elun 4133 . . 3 (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
44 velpw 4585 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
4542, 43, 443bitr4g 314 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋))
4645eqrdv 2734 1 (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3928  cun 3929  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888  cfv 6536  Topctop 22836  Clsdccld 22959  Conncconn 23354  Filcfil 23788  UFilcufil 23842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-fbas 21317  df-top 22837  df-cld 22962  df-conn 23355  df-fil 23789  df-ufil 23844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator