| Step | Hyp | Ref
| Expression |
| 1 | | elssuni 4918 |
. . . . . 6
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
| 2 | | ufilfil 23847 |
. . . . . . . . 9
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
| 3 | | filunibas 23824 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 =
𝑋) |
| 5 | | ufildr.1 |
. . . . . . . . . 10
⊢ 𝐽 = (𝐹 ∪ {∅}) |
| 6 | 5 | unieqi 4900 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ (𝐹 ∪ {∅}) |
| 7 | | uniun 4911 |
. . . . . . . . . 10
⊢ ∪ (𝐹
∪ {∅}) = (∪ 𝐹 ∪ ∪
{∅}) |
| 8 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 9 | 8 | unisn 4907 |
. . . . . . . . . . 11
⊢ ∪ {∅} = ∅ |
| 10 | 9 | uneq2i 4145 |
. . . . . . . . . 10
⊢ (∪ 𝐹
∪ ∪ {∅}) = (∪
𝐹 ∪
∅) |
| 11 | | un0 4374 |
. . . . . . . . . 10
⊢ (∪ 𝐹
∪ ∅) = ∪ 𝐹 |
| 12 | 7, 10, 11 | 3eqtri 2763 |
. . . . . . . . 9
⊢ ∪ (𝐹
∪ {∅}) = ∪ 𝐹 |
| 13 | 6, 12 | eqtr2i 2760 |
. . . . . . . 8
⊢ ∪ 𝐹 =
∪ 𝐽 |
| 14 | 4, 13 | eqtr3di 2786 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 = ∪ 𝐽) |
| 15 | 14 | sseq2d 3996 |
. . . . . 6
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ⊆ 𝑋 ↔ 𝑥 ⊆ ∪ 𝐽)) |
| 16 | 1, 15 | imbitrrid 246 |
. . . . 5
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
| 17 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 18 | 17 | cldss 22972 |
. . . . . 6
⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
| 19 | 18, 15 | imbitrrid 246 |
. . . . 5
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋)) |
| 20 | 16, 19 | jaod 859 |
. . . 4
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ 𝑋)) |
| 21 | | ufilss 23848 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
| 22 | | ssun1 4158 |
. . . . . . . . . 10
⊢ 𝐹 ⊆ (𝐹 ∪ {∅}) |
| 23 | 22, 5 | sseqtrri 4013 |
. . . . . . . . 9
⊢ 𝐹 ⊆ 𝐽 |
| 24 | 23 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → 𝐹 ⊆ 𝐽) |
| 25 | 24 | sseld 3962 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐹 → 𝑥 ∈ 𝐽)) |
| 26 | 24 | sseld 3962 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → (𝑋 ∖ 𝑥) ∈ 𝐽)) |
| 27 | | filconn 23826 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈
Conn) |
| 28 | | conntop 23360 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∪ {∅}) ∈ Conn
→ (𝐹 ∪ {∅})
∈ Top) |
| 29 | 2, 27, 28 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈
Top) |
| 30 | 5, 29 | eqeltrid 2839 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top) |
| 31 | 15 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ ∪ 𝐽) |
| 32 | 17 | iscld2 22971 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈
(Clsd‘𝐽) ↔
(∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
| 33 | 30, 31, 32 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
| 34 | 14 | difeq1d 4105 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑋 ∖ 𝑥) = (∪ 𝐽 ∖ 𝑥)) |
| 35 | 34 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
| 36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
| 37 | 33, 36 | bitr4d 282 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) |
| 38 | 26, 37 | sylibrd 259 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → 𝑥 ∈ (Clsd‘𝐽))) |
| 39 | 25, 38 | orim12d 966 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)))) |
| 40 | 21, 39 | mpd 15 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽))) |
| 41 | 40 | ex 412 |
. . . 4
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)))) |
| 42 | 20, 41 | impbid 212 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥 ⊆ 𝑋)) |
| 43 | | elun 4133 |
. . 3
⊢ (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽))) |
| 44 | | velpw 4585 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋) |
| 45 | 42, 43, 44 | 3bitr4g 314 |
. 2
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋)) |
| 46 | 45 | eqrdv 2734 |
1
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋) |