Step | Hyp | Ref
| Expression |
1 | | elssuni 4871 |
. . . . . 6
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
2 | | ufilfil 23055 |
. . . . . . . . 9
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
3 | | filunibas 23032 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 =
𝑋) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 =
𝑋) |
5 | | ufildr.1 |
. . . . . . . . . 10
⊢ 𝐽 = (𝐹 ∪ {∅}) |
6 | 5 | unieqi 4852 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ (𝐹 ∪ {∅}) |
7 | | uniun 4864 |
. . . . . . . . . 10
⊢ ∪ (𝐹
∪ {∅}) = (∪ 𝐹 ∪ ∪
{∅}) |
8 | | 0ex 5231 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
9 | 8 | unisn 4861 |
. . . . . . . . . . 11
⊢ ∪ {∅} = ∅ |
10 | 9 | uneq2i 4094 |
. . . . . . . . . 10
⊢ (∪ 𝐹
∪ ∪ {∅}) = (∪
𝐹 ∪
∅) |
11 | | un0 4324 |
. . . . . . . . . 10
⊢ (∪ 𝐹
∪ ∅) = ∪ 𝐹 |
12 | 7, 10, 11 | 3eqtri 2770 |
. . . . . . . . 9
⊢ ∪ (𝐹
∪ {∅}) = ∪ 𝐹 |
13 | 6, 12 | eqtr2i 2767 |
. . . . . . . 8
⊢ ∪ 𝐹 =
∪ 𝐽 |
14 | 4, 13 | eqtr3di 2793 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 = ∪ 𝐽) |
15 | 14 | sseq2d 3953 |
. . . . . 6
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ⊆ 𝑋 ↔ 𝑥 ⊆ ∪ 𝐽)) |
16 | 1, 15 | syl5ibr 245 |
. . . . 5
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋)) |
17 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
18 | 17 | cldss 22180 |
. . . . . 6
⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ ∪ 𝐽) |
19 | 18, 15 | syl5ibr 245 |
. . . . 5
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋)) |
20 | 16, 19 | jaod 856 |
. . . 4
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ 𝑋)) |
21 | | ufilss 23056 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
22 | | ssun1 4106 |
. . . . . . . . . 10
⊢ 𝐹 ⊆ (𝐹 ∪ {∅}) |
23 | 22, 5 | sseqtrri 3958 |
. . . . . . . . 9
⊢ 𝐹 ⊆ 𝐽 |
24 | 23 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → 𝐹 ⊆ 𝐽) |
25 | 24 | sseld 3920 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐹 → 𝑥 ∈ 𝐽)) |
26 | 24 | sseld 3920 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → (𝑋 ∖ 𝑥) ∈ 𝐽)) |
27 | | filconn 23034 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈
Conn) |
28 | | conntop 22568 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∪ {∅}) ∈ Conn
→ (𝐹 ∪ {∅})
∈ Top) |
29 | 2, 27, 28 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈
Top) |
30 | 5, 29 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top) |
31 | 15 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ ∪ 𝐽) |
32 | 17 | iscld2 22179 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈
(Clsd‘𝐽) ↔
(∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
33 | 30, 31, 32 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
34 | 14 | difeq1d 4056 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑋 ∖ 𝑥) = (∪ 𝐽 ∖ 𝑥)) |
35 | 34 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽)) |
37 | 33, 36 | bitr4d 281 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑥) ∈ 𝐽)) |
38 | 26, 37 | sylibrd 258 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → 𝑥 ∈ (Clsd‘𝐽))) |
39 | 25, 38 | orim12d 962 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)))) |
40 | 21, 39 | mpd 15 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽))) |
41 | 40 | ex 413 |
. . . 4
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)))) |
42 | 20, 41 | impbid 211 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥 ⊆ 𝑋)) |
43 | | elun 4083 |
. . 3
⊢ (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥 ∈ 𝐽 ∨ 𝑥 ∈ (Clsd‘𝐽))) |
44 | | velpw 4538 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋) |
45 | 42, 43, 44 | 3bitr4g 314 |
. 2
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋)) |
46 | 45 | eqrdv 2736 |
1
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋) |