| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotrgOLDOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cotrg 6083 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6086. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cotrgOLDOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6082 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | ssrel 5748 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶)) |
| 4 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 3454 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 6 | 4, 5 | opelco 5838 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
| 7 | df-br 5111 | . . . . . . . 8 ⊢ (𝑥𝐶𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐶) | |
| 8 | 7 | bicomi 224 | . . . . . . 7 ⊢ (〈𝑥, 𝑧〉 ∈ 𝐶 ↔ 𝑥𝐶𝑧) |
| 9 | 6, 8 | imbi12i 350 | . . . . . 6 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 10 | 19.23v 1942 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
| 11 | 9, 10 | bitr4i 278 | . . . . 5 ⊢ ((〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 12 | 11 | albii 1819 | . . . 4 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 13 | alcom 2160 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
| 14 | 12, 13 | bitri 275 | . . 3 ⊢ (∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 15 | 14 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ (𝐴 ∘ 𝐵) → 〈𝑥, 𝑧〉 ∈ 𝐶) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 16 | 3, 15 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 〈cop 4598 class class class wbr 5110 ∘ ccom 5645 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-co 5650 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |