![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrgOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cotrg 6106 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6109. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cotrgOLDOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6105 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | ssrel 5781 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶)) |
4 | vex 3479 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3479 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | opelco 5870 | . . . . . . 7 ⊢ (⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
7 | df-br 5149 | . . . . . . . 8 ⊢ (𝑥𝐶𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐶) | |
8 | 7 | bicomi 223 | . . . . . . 7 ⊢ (⟨𝑥, 𝑧⟩ ∈ 𝐶 ↔ 𝑥𝐶𝑧) |
9 | 6, 8 | imbi12i 351 | . . . . . 6 ⊢ ((⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
10 | 19.23v 1946 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
11 | 9, 10 | bitr4i 278 | . . . . 5 ⊢ ((⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
12 | 11 | albii 1822 | . . . 4 ⊢ (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
13 | alcom 2157 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
14 | 12, 13 | bitri 275 | . . 3 ⊢ (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
15 | 14 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
16 | 3, 15 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 ⊆ wss 3948 ⟨cop 4634 class class class wbr 5148 ∘ ccom 5680 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-co 5685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |