![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrgOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cotrg 6098 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6101. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cotrgOLDOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6097 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | ssrel 5772 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶)) |
4 | vex 3470 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3470 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | opelco 5861 | . . . . . . 7 ⊢ (⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
7 | df-br 5139 | . . . . . . . 8 ⊢ (𝑥𝐶𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐶) | |
8 | 7 | bicomi 223 | . . . . . . 7 ⊢ (⟨𝑥, 𝑧⟩ ∈ 𝐶 ↔ 𝑥𝐶𝑧) |
9 | 6, 8 | imbi12i 350 | . . . . . 6 ⊢ ((⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
10 | 19.23v 1937 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
11 | 9, 10 | bitr4i 278 | . . . . 5 ⊢ ((⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
12 | 11 | albii 1813 | . . . 4 ⊢ (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
13 | alcom 2148 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
14 | 12, 13 | bitri 275 | . . 3 ⊢ (∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
15 | 14 | albii 1813 | . 2 ⊢ (∀𝑥∀𝑧(⟨𝑥, 𝑧⟩ ∈ (𝐴 ∘ 𝐵) → ⟨𝑥, 𝑧⟩ ∈ 𝐶) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
16 | 3, 15 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∃wex 1773 ∈ wcel 2098 ⊆ wss 3940 ⟨cop 4626 class class class wbr 5138 ∘ ccom 5670 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-co 5675 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |