MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1eq Structured version   Visualization version   GIF version

Theorem gsumply1eq 19948
Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019.)
Hypotheses
Ref Expression
gsumply1eq.p 𝑃 = (Poly1𝑅)
gsumply1eq.x 𝑋 = (var1𝑅)
gsumply1eq.e = (.g‘(mulGrp‘𝑃))
gsumply1eq.r (𝜑𝑅 ∈ Ring)
gsumply1eq.k 𝐾 = (Base‘𝑅)
gsumply1eq.m = ( ·𝑠𝑃)
gsumply1eq.0 0 = (0g𝑅)
gsumply1eq.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsumply1eq.f1 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsumply1eq.b (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
gsumply1eq.f2 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
gsumply1eq.o (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
gsumply1eq.q (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
Assertion
Ref Expression
gsumply1eq (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋   𝜑,𝑘   0 ,𝑘   ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem gsumply1eq
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 gsumply1eq.r . . 3 (𝜑𝑅 ∈ Ring)
2 gsumply1eq.o . . . 4 (𝜑𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
3 gsumply1eq.p . . . . 5 𝑃 = (Poly1𝑅)
4 eqid 2765 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
5 gsumply1eq.x . . . . 5 𝑋 = (var1𝑅)
6 gsumply1eq.e . . . . 5 = (.g‘(mulGrp‘𝑃))
7 gsumply1eq.k . . . . 5 𝐾 = (Base‘𝑅)
8 gsumply1eq.m . . . . 5 = ( ·𝑠𝑃)
9 gsumply1eq.0 . . . . 5 0 = (0g𝑅)
10 gsumply1eq.a . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
11 gsumply1eq.f1 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
123, 4, 5, 6, 1, 7, 8, 9, 10, 11gsumsmonply1 19946 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) ∈ (Base‘𝑃))
132, 12eqeltrd 2844 . . 3 (𝜑𝑂 ∈ (Base‘𝑃))
14 gsumply1eq.q . . . 4 (𝜑𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
15 gsumply1eq.b . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵𝐾)
16 gsumply1eq.f2 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐵) finSupp 0 )
173, 4, 5, 6, 1, 7, 8, 9, 15, 16gsumsmonply1 19946 . . . 4 (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) ∈ (Base‘𝑃))
1814, 17eqeltrd 2844 . . 3 (𝜑𝑄 ∈ (Base‘𝑃))
19 eqid 2765 . . . . 5 (coe1𝑂) = (coe1𝑂)
20 eqid 2765 . . . . 5 (coe1𝑄) = (coe1𝑄)
213, 4, 19, 20ply1coe1eq 19941 . . . 4 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝑂 = 𝑄))
2221bicomd 214 . . 3 ((𝑅 ∈ Ring ∧ 𝑂 ∈ (Base‘𝑃) ∧ 𝑄 ∈ (Base‘𝑃)) → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
231, 13, 18, 22syl3anc 1490 . 2 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘)))
242adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))
25 nfcv 2907 . . . . . . . . . 10 𝑙(𝐴 (𝑘 𝑋))
26 nfcsb1v 3707 . . . . . . . . . . 11 𝑘𝑙 / 𝑘𝐴
27 nfcv 2907 . . . . . . . . . . 11 𝑘
28 nfcv 2907 . . . . . . . . . . 11 𝑘(𝑙 𝑋)
2926, 27, 28nfov 6872 . . . . . . . . . 10 𝑘(𝑙 / 𝑘𝐴 (𝑙 𝑋))
30 csbeq1a 3700 . . . . . . . . . . 11 (𝑘 = 𝑙𝐴 = 𝑙 / 𝑘𝐴)
31 oveq1 6849 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑘 𝑋) = (𝑙 𝑋))
3230, 31oveq12d 6860 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴 (𝑘 𝑋)) = (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3325, 29, 32cbvmpt 4908 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))
3433oveq2i 6853 . . . . . . . 8 (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))
3524, 34syl6eq 2815 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑂 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))
3635fveq2d 6379 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑂) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋))))))
3736fveq1d 6377 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘))
381adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
39 nfv 2009 . . . . . . . . . 10 𝑙 𝐴𝐾
4026nfel1 2922 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐴𝐾
4130eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐴𝐾𝑙 / 𝑘𝐴𝐾))
4239, 40, 41cbvral 3315 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐴𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4310, 42sylib 209 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
4443adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐴𝐾)
45 nfcv 2907 . . . . . . . . . 10 𝑙𝐴
4645, 26, 30cbvmpt 4908 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐴) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴)
4746, 11syl5eqbrr 4845 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
4847adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐴) finSupp 0 )
49 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
503, 4, 5, 6, 38, 7, 8, 9, 44, 48, 49gsummoncoe1 19947 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐴)
51 csbco 3701 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝑘 / 𝑘𝐴
52 csbid 3699 . . . . . . 7 𝑘 / 𝑘𝐴 = 𝐴
5351, 52eqtri 2787 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐴 = 𝐴
5450, 53syl6eq 2815 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐴 (𝑙 𝑋)))))‘𝑘) = 𝐴)
5537, 54eqtrd 2799 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) = 𝐴)
5614adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))))
57 nfcv 2907 . . . . . . . . . . 11 𝑙(𝐵 (𝑘 𝑋))
58 nfcsb1v 3707 . . . . . . . . . . . 12 𝑘𝑙 / 𝑘𝐵
5958, 27, 28nfov 6872 . . . . . . . . . . 11 𝑘(𝑙 / 𝑘𝐵 (𝑙 𝑋))
60 csbeq1a 3700 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6160, 31oveq12d 6860 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝐵 (𝑘 𝑋)) = (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6257, 59, 61cbvmpt 4908 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))
6362a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋))) = (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))
6463oveq2d 6858 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 (𝑘 𝑋)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6556, 64eqtrd 2799 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))
6665fveq2d 6379 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coe1𝑄) = (coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋))))))
6766fveq1d 6377 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘))
68 nfv 2009 . . . . . . . . . 10 𝑙 𝐵𝐾
6958nfel1 2922 . . . . . . . . . 10 𝑘𝑙 / 𝑘𝐵𝐾
7060eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝐵𝐾𝑙 / 𝑘𝐵𝐾))
7168, 69, 70cbvral 3315 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 𝐵𝐾 ↔ ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7215, 71sylib 209 . . . . . . . 8 (𝜑 → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
7372adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 𝑙 / 𝑘𝐵𝐾)
74 nfcv 2907 . . . . . . . . . 10 𝑙𝐵
7574, 58, 60cbvmpt 4908 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐵) = (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵)
7675, 16syl5eqbrr 4845 . . . . . . . 8 (𝜑 → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
7776adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑙 ∈ ℕ0𝑙 / 𝑘𝐵) finSupp 0 )
783, 4, 5, 6, 38, 7, 8, 9, 73, 77, 49gsummoncoe1 19947 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝑘 / 𝑙𝑙 / 𝑘𝐵)
79 csbco 3701 . . . . . . 7 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
80 csbid 3699 . . . . . . 7 𝑘 / 𝑘𝐵 = 𝐵
8179, 80eqtri 2787 . . . . . 6 𝑘 / 𝑙𝑙 / 𝑘𝐵 = 𝐵
8278, 81syl6eq 2815 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝑙 ∈ ℕ0 ↦ (𝑙 / 𝑘𝐵 (𝑙 𝑋)))))‘𝑘) = 𝐵)
8367, 82eqtrd 2799 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((coe1𝑄)‘𝑘) = 𝐵)
8455, 83eqeq12d 2780 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ 𝐴 = 𝐵))
8584ralbidva 3132 . 2 (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1𝑂)‘𝑘) = ((coe1𝑄)‘𝑘) ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
8623, 85bitrd 270 1 (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  csb 3691   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842   finSupp cfsupp 8482  0cn0 11538  Basecbs 16132   ·𝑠 cvsca 16220  0gc0g 16368   Σg cgsu 16369  .gcmg 17809  mulGrpcmgp 18756  Ringcrg 18814  var1cv1 19819  Poly1cpl1 19820  coe1cco1 19821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-tset 16235  df-ple 16236  df-0g 16370  df-gsum 16371  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mulg 17810  df-subg 17857  df-ghm 17924  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-srg 18773  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-psr 19630  df-mvr 19631  df-mpl 19632  df-opsr 19634  df-psr1 19823  df-vr1 19824  df-ply1 19825  df-coe1 19826
This theorem is referenced by:  chcoeffeqlem  20969
  Copyright terms: Public domain W3C validator