Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0f1o Structured version   Visualization version   GIF version

Theorem sge0f1o 41078
Description: Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0f1o.1 𝑘𝜑
sge0f1o.2 𝑛𝜑
sge0f1o.3 (𝑘 = 𝐺𝐵 = 𝐷)
sge0f1o.4 (𝜑𝐶𝑉)
sge0f1o.5 (𝜑𝐹:𝐶1-1-onto𝐴)
sge0f1o.6 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0f1o.7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0f1o (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0f1o.4 . . . . . 6 (𝜑𝐶𝑉)
2 sge0f1o.5 . . . . . . 7 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1ofo 6360 . . . . . . 7 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶onto𝐴)
42, 3syl 17 . . . . . 6 (𝜑𝐹:𝐶onto𝐴)
5 fornex 7365 . . . . . 6 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
61, 4, 5sylc 65 . . . . 5 (𝜑𝐴 ∈ V)
76adantr 468 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
8 sge0f1o.1 . . . . . 6 𝑘𝜑
9 sge0f1o.7 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
10 eqid 2806 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
118, 9, 10fmptdf 6609 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
1211adantr 468 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
13 pnfex 10378 . . . . . . . 8 +∞ ∈ V
14 eqid 2806 . . . . . . . . 9 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
1514elrnmpt 5573 . . . . . . . 8 (+∞ ∈ V → (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷))
1613, 15ax-mp 5 . . . . . . 7 (+∞ ∈ ran (𝑛𝐶𝐷) ↔ ∃𝑛𝐶 +∞ = 𝐷)
1716biimpi 207 . . . . . 6 (+∞ ∈ ran (𝑛𝐶𝐷) → ∃𝑛𝐶 +∞ = 𝐷)
1817adantl 469 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → ∃𝑛𝐶 +∞ = 𝐷)
19 sge0f1o.2 . . . . . . 7 𝑛𝜑
20 nfv 2005 . . . . . . 7 𝑛+∞ ∈ ran (𝑘𝐴𝐵)
21 simp3 1161 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = 𝐷)
22 f1of 6353 . . . . . . . . . . . . . . 15 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
232, 22syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐶𝐴)
2423ffvelrnda 6581 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
25 sge0f1o.6 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
26 nfcv 2948 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛)
27 nfv 2005 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) = 𝐺
2826nfcsb1 3743 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑛) / 𝑘𝐵
29 nfcv 2948 . . . . . . . . . . . . . . . 16 𝑘𝐷
3028, 29nfeq 2960 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) / 𝑘𝐵 = 𝐷
3127, 30nfim 1987 . . . . . . . . . . . . . 14 𝑘((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)
32 eqeq1 2810 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘 = 𝐺 ↔ (𝐹𝑛) = 𝐺))
33 csbeq1a 3737 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐹𝑛) → 𝐵 = (𝐹𝑛) / 𝑘𝐵)
3433eqeq1d 2808 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝐵 = 𝐷(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3532, 34imbi12d 335 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝑘 = 𝐺𝐵 = 𝐷) ↔ ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷)))
36 sge0f1o.3 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
3726, 31, 35, 36vtoclgf 3457 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ 𝐴 → ((𝐹𝑛) = 𝐺(𝐹𝑛) / 𝑘𝐵 = 𝐷))
3824, 25, 37sylc 65 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
3938eqcomd 2812 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
40393adant3 1155 . . . . . . . . . 10 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → 𝐷 = (𝐹𝑛) / 𝑘𝐵)
4121, 40eqtrd 2840 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ = (𝐹𝑛) / 𝑘𝐵)
42 simpl 470 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝜑)
4342, 24jca 503 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → (𝜑 ∧ (𝐹𝑛) ∈ 𝐴))
44 nfv 2005 . . . . . . . . . . . . . . 15 𝑘(𝐹𝑛) ∈ 𝐴
458, 44nfan 1990 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐹𝑛) ∈ 𝐴)
4628nfel1 2963 . . . . . . . . . . . . . 14 𝑘(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)
4745, 46nfim 1987 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
48 eleq1 2873 . . . . . . . . . . . . . . 15 (𝑘 = (𝐹𝑛) → (𝑘𝐴 ↔ (𝐹𝑛) ∈ 𝐴))
4948anbi2d 616 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → ((𝜑𝑘𝐴) ↔ (𝜑 ∧ (𝐹𝑛) ∈ 𝐴)))
5033eleq1d 2870 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑛) → (𝐵 ∈ (0[,]+∞) ↔ (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5149, 50imbi12d 335 . . . . . . . . . . . . 13 (𝑘 = (𝐹𝑛) → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))))
5226, 47, 51, 9vtoclgf 3457 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ 𝐴 → ((𝜑 ∧ (𝐹𝑛) ∈ 𝐴) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)))
5324, 43, 52sylc 65 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞))
5428, 10, 33elrnmpt1sf 39865 . . . . . . . . . . 11 (((𝐹𝑛) ∈ 𝐴(𝐹𝑛) / 𝑘𝐵 ∈ (0[,]+∞)) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5524, 53, 54syl2anc 575 . . . . . . . . . 10 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
56553adant3 1155 . . . . . . . . 9 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → (𝐹𝑛) / 𝑘𝐵 ∈ ran (𝑘𝐴𝐵))
5741, 56eqeltrd 2885 . . . . . . . 8 ((𝜑𝑛𝐶 ∧ +∞ = 𝐷) → +∞ ∈ ran (𝑘𝐴𝐵))
58573exp 1141 . . . . . . 7 (𝜑 → (𝑛𝐶 → (+∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵))))
5919, 20, 58rexlimd 3214 . . . . . 6 (𝜑 → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6059adantr 468 . . . . 5 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (∃𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘𝐴𝐵)))
6118, 60mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑘𝐴𝐵))
627, 12, 61sge0pnfval 41069 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
631adantr 468 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
6439, 53eqeltrd 2885 . . . . . 6 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
6519, 64, 14fmptdf 6609 . . . . 5 (𝜑 → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
6665adantr 468 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶𝐷):𝐶⟶(0[,]+∞))
67 simpr 473 . . . 4 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → +∞ ∈ ran (𝑛𝐶𝐷))
6863, 66, 67sge0pnfval 41069 . . 3 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = +∞)
6962, 68eqtr4d 2843 . 2 ((𝜑 ∧ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
70 sumex 14641 . . . . . . 7 Σ𝑘𝑦 𝐵 ∈ V
7170a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ V)
72 cnvimass 5695 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ dom 𝐹
7372, 23fssdm 6272 . . . . . . . . . . 11 (𝜑 → (𝐹𝑦) ⊆ 𝐶)
74 fex 6714 . . . . . . . . . . . . . . 15 ((𝐹:𝐶𝐴𝐶𝑉) → 𝐹 ∈ V)
7523, 1, 74syl2anc 575 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
76 cnvexg 7342 . . . . . . . . . . . . . 14 (𝐹 ∈ V → 𝐹 ∈ V)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
78 imaexg 7333 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹𝑦) ∈ V)
7977, 78syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑦) ∈ V)
80 elpwg 4359 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8179, 80syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
8273, 81mpbird 248 . . . . . . . . . 10 (𝜑 → (𝐹𝑦) ∈ 𝒫 𝐶)
8382adantr 468 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ 𝒫 𝐶)
84 f1ocnv 6365 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐴1-1-onto𝐶)
852, 84syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1-onto𝐶)
86 f1ofun 6355 . . . . . . . . . . . 12 (𝐹:𝐴1-1-onto𝐶 → Fun 𝐹)
8785, 86syl 17 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
8887adantr 468 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
89 elinel2 3999 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9089adantl 469 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
91 imafi 8498 . . . . . . . . . 10 ((Fun 𝐹𝑦 ∈ Fin) → (𝐹𝑦) ∈ Fin)
9288, 90, 91syl2anc 575 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
9383, 92elind 3997 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
9493adantlr 697 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
95 nfv 2005 . . . . . . . . . 10 𝑘 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
968, 95nfan 1990 . . . . . . . . 9 𝑘(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
97 nfv 2005 . . . . . . . . 9 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
9896, 97nfan 1990 . . . . . . . 8 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
99 nfcv 2948 . . . . . . . . . . . 12 𝑛+∞
100 nfmpt1 4941 . . . . . . . . . . . . 13 𝑛(𝑛𝐶𝐷)
101100nfrn 5569 . . . . . . . . . . . 12 𝑛ran (𝑛𝐶𝐷)
10299, 101nfel 2961 . . . . . . . . . . 11 𝑛+∞ ∈ ran (𝑛𝐶𝐷)
103102nfn 1944 . . . . . . . . . 10 𝑛 ¬ +∞ ∈ ran (𝑛𝐶𝐷)
10419, 103nfan 1990 . . . . . . . . 9 𝑛(𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷))
105 nfv 2005 . . . . . . . . 9 𝑛 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
106104, 105nfan 1990 . . . . . . . 8 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
10792adantlr 697 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ∈ Fin)
108 f1of1 6352 . . . . . . . . . . . . 13 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
1092, 108syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐶1-1𝐴)
110109adantr 468 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
11181adantr 468 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦) ∈ 𝒫 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
11283, 111mpbid 223 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) ⊆ 𝐶)
113 f1ores 6367 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴 ∧ (𝐹𝑦) ⊆ 𝐶) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
114110, 112, 113syl2anc 575 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)))
1154adantr 468 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶onto𝐴)
116 elpwinss 39709 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
117116adantl 469 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
118 foimacnv 6370 . . . . . . . . . . . 12 ((𝐹:𝐶onto𝐴𝑦𝐴) → (𝐹 “ (𝐹𝑦)) = 𝑦)
119115, 117, 118syl2anc 575 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
120119f1oeq3d 6350 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto→(𝐹 “ (𝐹𝑦)) ↔ (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦))
121114, 120mpbid 223 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
122121adantlr 697 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (𝐹𝑦)):(𝐹𝑦)–1-1-onto𝑦)
12379ad2antrr 708 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ V)
124 simpll 774 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝜑)
12593adantr 468 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
126 simpr 473 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐹𝑦))
127124, 125, 126jca31 506 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)))
128 eleq1 2873 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)))
129128anbi2d 616 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ (𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
130 eleq2 2874 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝑛𝑥𝑛 ∈ (𝐹𝑦)))
131129, 130anbi12d 618 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) ↔ ((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦))))
132 reseq2 5592 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 ↾ (𝐹𝑦)))
133132fveq1d 6410 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → ((𝐹𝑥)‘𝑛) = ((𝐹 ↾ (𝐹𝑦))‘𝑛))
134133eqeq1d 2808 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝐹𝑥)‘𝑛) = 𝐺 ↔ ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
135131, 134imbi12d 335 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺) ↔ (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)))
136 fvres 6427 . . . . . . . . . . . . 13 (𝑛𝑥 → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
137136adantl 469 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = (𝐹𝑛))
138 simpll 774 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝜑)
139 elpwinss 39709 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥𝐶)
140139adantl 469 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥𝐶)
141140sselda 3798 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → 𝑛𝐶)
142138, 141, 25syl2anc 575 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → (𝐹𝑛) = 𝐺)
143137, 142eqtrd 2840 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
144135, 143vtoclg 3459 . . . . . . . . . 10 ((𝐹𝑦) ∈ V → (((𝜑 ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺))
145123, 127, 144sylc 65 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
146145adantllr 701 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (𝐹𝑦)) → ((𝐹 ↾ (𝐹𝑦))‘𝑛) = 𝐺)
14779ad3antrrr 712 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ V)
148 simpll 774 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)))
14982ad3antrrr 712 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ 𝒫 𝐶)
150107adantr 468 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ Fin)
151149, 150elind 3997 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))
152 simpr 473 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝑦)
153119eqcomd 2812 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 = (𝐹 “ (𝐹𝑦)))
154153adantr 468 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑦 = (𝐹 “ (𝐹𝑦)))
155152, 154eleqtrd 2887 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
156155adantllr 701 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘 ∈ (𝐹 “ (𝐹𝑦)))
157148, 151, 156jca31 506 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
158128anbi2d 616 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin))))
159 imaeq2 5672 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
160159eleq2d 2871 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑦) → (𝑘 ∈ (𝐹𝑥) ↔ 𝑘 ∈ (𝐹 “ (𝐹𝑦))))
161158, 160anbi12d 618 . . . . . . . . . . 11 (𝑥 = (𝐹𝑦) → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) ↔ (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦)))))
162161imbi1d 332 . . . . . . . . . 10 (𝑥 = (𝐹𝑦) → (((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ) ↔ ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ)))
163 rge0ssre 12500 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
164 ax-resscn 10278 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
165163, 164sstri 3807 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
166 simplll 782 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝜑)
167 simpllr 784 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
168 fimass 6296 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶𝐴 → (𝐹𝑥) ⊆ 𝐴)
16923, 168syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑥) ⊆ 𝐴)
170169ad2antrr 708 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → (𝐹𝑥) ⊆ 𝐴)
171 simpr 473 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘 ∈ (𝐹𝑥))
172170, 171sseldd 3799 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
173172adantllr 701 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝑘𝐴)
174 foelrni 6465 . . . . . . . . . . . . . . . 16 ((𝐹:𝐶onto𝐴𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
1754, 174sylan 571 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
176175adantlr 697 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → ∃𝑛𝐶 (𝐹𝑛) = 𝑘)
177 nfv 2005 . . . . . . . . . . . . . . . 16 𝑛 𝑘𝐴
178104, 177nfan 1990 . . . . . . . . . . . . . . 15 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴)
179 nfv 2005 . . . . . . . . . . . . . . 15 𝑛 𝐵 ∈ (0[,)+∞)
180 csbid 3736 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 / 𝑘𝐵 = 𝐵
181180eqcomi 2815 . . . . . . . . . . . . . . . . . . . . 21 𝐵 = 𝑘 / 𝑘𝐵
182181a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝑘 / 𝑘𝐵)
183 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑛) = 𝑘 → (𝐹𝑛) = 𝑘)
184183eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑛) = 𝑘𝑘 = (𝐹𝑛))
185184csbeq1d 3735 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑛) = 𝑘𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
1861853ad2ant3 1158 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝑘 / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
18738idi 2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛𝐶) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
1881873adant3 1155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → (𝐹𝑛) / 𝑘𝐵 = 𝐷)
189182, 186, 1883eqtrd 2844 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
1901893adant1r 1216 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 = 𝐷)
191 0xr 10371 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ*
192191a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 0 ∈ ℝ*)
193 pnfxr 10377 . . . . . . . . . . . . . . . . . . . . . . . . 25 +∞ ∈ ℝ*
194193a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ℝ*)
19564adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ (0[,]+∞))
196 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ 𝐷 ∈ (0[,)+∞))
197192, 194, 195, 196eliccnelico 40236 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 = +∞)
198197eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ = 𝐷)
199 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝑛𝐶)
20064idi 2 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛𝐶) → 𝐷 ∈ (0[,]+∞))
20114elrnmpt1 5575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝐶𝐷 ∈ (0[,]+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
202199, 200, 201syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛𝐶) → 𝐷 ∈ ran (𝑛𝐶𝐷))
203202adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ ran (𝑛𝐶𝐷))
204198, 203eqeltrd 2885 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
205204adantllr 701 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ ∈ ran (𝑛𝐶𝐷))
206 simpllr 784 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ +∞ ∈ ran (𝑛𝐶𝐷))
207205, 206condan 843 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶) → 𝐷 ∈ (0[,)+∞))
2082073adant3 1155 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐷 ∈ (0[,)+∞))
209190, 208eqeltrd 2885 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑛𝐶 ∧ (𝐹𝑛) = 𝑘) → 𝐵 ∈ (0[,)+∞))
2102093exp 1141 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
211210adantr 468 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (𝑛𝐶 → ((𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞))))
212178, 179, 211rexlimd 3214 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → (∃𝑛𝐶 (𝐹𝑛) = 𝑘𝐵 ∈ (0[,)+∞)))
213176, 212mpd 15 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
214166, 167, 173, 213syl21anc 857 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ (0[,)+∞))
215165, 214sseldi 3796 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
216215idi 2 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹𝑥)) → 𝐵 ∈ ℂ)
217162, 216vtoclg 3459 . . . . . . . . 9 ((𝐹𝑦) ∈ V → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ (𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (𝐹𝑦))) → 𝐵 ∈ ℂ))
218147, 157, 217sylc 65 . . . . . . . 8 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
21998, 106, 36, 107, 122, 146, 218fsumf1of 40286 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
220 sumeq1 14642 . . . . . . . 8 (𝑥 = (𝐹𝑦) → Σ𝑛𝑥 𝐷 = Σ𝑛 ∈ (𝐹𝑦)𝐷)
221220rspceeqv 3520 . . . . . . 7 (((𝐹𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ Σ𝑘𝑦 𝐵 = Σ𝑛 ∈ (𝐹𝑦)𝐷) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22294, 219, 221syl2anc 575 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘𝑦 𝐵 = Σ𝑛𝑥 𝐷)
22371, 222rnmptssrn 39857 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
224 sumex 14641 . . . . . . 7 Σ𝑛𝑥 𝐷 ∈ V
225224a1i 11 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 ∈ V)
2266, 169ssexd 5000 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑥) ∈ V)
227 elpwg 4359 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ V → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
228226, 227syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑥) ∈ 𝒫 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
229169, 228mpbird 248 . . . . . . . . . 10 (𝜑 → (𝐹𝑥) ∈ 𝒫 𝐴)
230229adantr 468 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ 𝒫 𝐴)
23123ffund 6260 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
232231adantr 468 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Fun 𝐹)
233 elinel2 3999 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ∈ Fin)
234233adantl 469 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
235 imafi 8498 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ Fin) → (𝐹𝑥) ∈ Fin)
236232, 234, 235syl2anc 575 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ Fin)
237230, 236elind 3997 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
238237adantlr 697 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin))
239 nfv 2005 . . . . . . . . . 10 𝑘 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
24096, 239nfan 1990 . . . . . . . . 9 𝑘((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
241 nfv 2005 . . . . . . . . . 10 𝑛 𝑥 ∈ (𝒫 𝐶 ∩ Fin)
242104, 241nfan 1990 . . . . . . . . 9 𝑛((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin))
243233adantl 469 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin)
244109adantr 468 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐶1-1𝐴)
245 f1ores 6367 . . . . . . . . . . 11 ((𝐹:𝐶1-1𝐴𝑥𝐶) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
246244, 140, 245syl2anc 575 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
247246adantlr 697 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹𝑥):𝑥1-1-onto→(𝐹𝑥))
248143adantllr 701 . . . . . . . . 9 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛𝑥) → ((𝐹𝑥)‘𝑛) = 𝐺)
249240, 242, 36, 243, 247, 248, 215fsumf1of 40286 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑘 ∈ (𝐹𝑥)𝐵 = Σ𝑛𝑥 𝐷)
250249eqcomd 2812 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
251 sumeq1 14642 . . . . . . . 8 (𝑦 = (𝐹𝑥) → Σ𝑘𝑦 𝐵 = Σ𝑘 ∈ (𝐹𝑥)𝐵)
252251rspceeqv 3520 . . . . . . 7 (((𝐹𝑥) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑛𝑥 𝐷 = Σ𝑘 ∈ (𝐹𝑥)𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
253238, 250, 252syl2anc 575 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛𝑥 𝐷 = Σ𝑘𝑦 𝐵)
254225, 253rnmptssrn 39857 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷) ⊆ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵))
255223, 254eqssd 3815 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵) = ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷))
256255supeq1d 8591 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
2576adantr 468 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐴 ∈ V)
25896, 257, 213sge0revalmpt 41074 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘𝑦 𝐵), ℝ*, < ))
2591adantr 468 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → 𝐶𝑉)
260104, 259, 207sge0revalmpt 41074 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑛𝐶𝐷)) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛𝑥 𝐷), ℝ*, < ))
261256, 258, 2603eqtr4d 2850 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛𝐶𝐷)) → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
26269, 261pm2.61dan 838 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wnf 1863  wcel 2156  wrex 3097  Vcvv 3391  csb 3728  cin 3768  wss 3769  𝒫 cpw 4351  cmpt 4923  ccnv 5310  ran crn 5312  cres 5313  cima 5314  Fun wfun 6095  wf 6097  1-1wf1 6098  ontowfo 6099  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6874  Fincfn 8192  supcsup 8585  cc 10219  cr 10220  0cc0 10221  +∞cpnf 10356  *cxr 10358   < clt 10359  [,)cico 12395  [,]cicc 12396  Σcsu 14639  Σ^csumge0 41058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-sup 8587  df-oi 8654  df-card 9048  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644  df-uz 11905  df-rp 12047  df-ico 12399  df-icc 12400  df-fz 12550  df-fzo 12690  df-seq 13025  df-exp 13084  df-hash 13338  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-clim 14442  df-sum 14640  df-sumge0 41059
This theorem is referenced by:  sge0resrnlem  41099  sge0fodjrnlem  41112  sge0xp  41125  meadjiunlem  41161  isomenndlem  41226  ovnsubaddlem1  41266
  Copyright terms: Public domain W3C validator