Step | Hyp | Ref
| Expression |
1 | | sge0f1o.4 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
2 | | sge0f1o.5 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
3 | | f1ofo 6723 |
. . . . . . 7
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–onto→𝐴) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) |
5 | | fornex 7798 |
. . . . . 6
⊢ (𝐶 ∈ 𝑉 → (𝐹:𝐶–onto→𝐴 → 𝐴 ∈ V)) |
6 | 1, 4, 5 | sylc 65 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐴 ∈ V) |
8 | | sge0f1o.1 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
9 | | sge0f1o.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
10 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
11 | 8, 9, 10 | fmptdf 6991 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
13 | | pnfex 11028 |
. . . . . . . 8
⊢ +∞
∈ V |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐶 ↦ 𝐷) = (𝑛 ∈ 𝐶 ↦ 𝐷) |
15 | 14 | elrnmpt 5865 |
. . . . . . . 8
⊢ (+∞
∈ V → (+∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) ↔ ∃𝑛 ∈ 𝐶 +∞ = 𝐷)) |
16 | 13, 15 | ax-mp 5 |
. . . . . . 7
⊢ (+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) ↔ ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
17 | 16 | biimpi 215 |
. . . . . 6
⊢ (+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) → ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
18 | 17 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → ∃𝑛 ∈ 𝐶 +∞ = 𝐷) |
19 | | sge0f1o.2 |
. . . . . . 7
⊢
Ⅎ𝑛𝜑 |
20 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑛+∞
∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵) |
21 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ = 𝐷) |
22 | | f1of 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) |
23 | 2, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
24 | 23 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
25 | | sge0f1o.6 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
26 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝐹‘𝑛) |
27 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐹‘𝑛) = 𝐺 |
28 | 26 | nfcsb1 3856 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 |
29 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝐷 |
30 | 28, 29 | nfeq 2920 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷 |
31 | 27, 30 | nfim 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
32 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝑘 = 𝐺 ↔ (𝐹‘𝑛) = 𝐺)) |
33 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
34 | 33 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 = 𝐷 ↔ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷)) |
35 | 32, 34 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → ((𝑘 = 𝐺 → 𝐵 = 𝐷) ↔ ((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷))) |
36 | | sge0f1o.3 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
37 | 26, 31, 35, 36 | vtoclgf 3503 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∈ 𝐴 → ((𝐹‘𝑛) = 𝐺 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷)) |
38 | 24, 25, 37 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
39 | 38 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
40 | 39 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → 𝐷 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
41 | 21, 40 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
42 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝜑) |
43 | 42, 24 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴)) |
44 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐹‘𝑛) ∈ 𝐴 |
45 | 8, 44 | nfan 1902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) |
46 | 28 | nfel1 2923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞) |
47 | 45, 46 | nfim 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) |
48 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐹‘𝑛) → (𝑘 ∈ 𝐴 ↔ (𝐹‘𝑛) ∈ 𝐴)) |
49 | 48 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴))) |
50 | 33 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐹‘𝑛) → (𝐵 ∈ (0[,]+∞) ↔
⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞))) |
51 | 49, 50 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐹‘𝑛) → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)))) |
52 | 26, 47, 51, 9 | vtoclgf 3503 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑛) ∈ 𝐴 → ((𝜑 ∧ (𝐹‘𝑛) ∈ 𝐴) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞))) |
53 | 24, 43, 52 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) |
54 | 28, 10, 33 | elrnmpt1sf 42727 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑛) ∈ 𝐴 ∧ ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ (0[,]+∞)) →
⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
55 | 24, 53, 54 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
56 | 55 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
57 | 41, 56 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷) → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
58 | 57 | 3exp 1118 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝐶 → (+∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
59 | 19, 20, 58 | rexlimd 3250 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
60 | 59 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (∃𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) |
61 | 18, 60 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → +∞ ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
62 | 7, 12, 61 | sge0pnfval 43911 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) |
63 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐶 ∈ 𝑉) |
64 | 39, 53 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,]+∞)) |
65 | 19, 64, 14 | fmptdf 6991 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝐶 ↦ 𝐷):𝐶⟶(0[,]+∞)) |
66 | 65 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑛 ∈ 𝐶 ↦ 𝐷):𝐶⟶(0[,]+∞)) |
67 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) → +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
68 | 63, 66, 67 | sge0pnfval 43911 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷)) = +∞) |
69 | 62, 68 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
70 | | sumex 15399 |
. . . . . . 7
⊢
Σ𝑘 ∈
𝑦 𝐵 ∈ V |
71 | 70 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘 ∈ 𝑦 𝐵 ∈ V) |
72 | | cnvimass 5989 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
73 | 72, 23 | fssdm 6620 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ 𝑦) ⊆ 𝐶) |
74 | 23, 1 | fexd 7103 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ V) |
75 | | cnvexg 7771 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ◡𝐹 ∈ V) |
77 | | imaexg 7762 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑦) ∈ V) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ 𝑦) ∈ V) |
79 | | elpwg 4536 |
. . . . . . . . . . . 12
⊢ ((◡𝐹 “ 𝑦) ∈ V → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
81 | 73, 80 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
82 | 81 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
83 | | f1ocnv 6728 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐶–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐶) |
84 | 2, 83 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹:𝐴–1-1-onto→𝐶) |
85 | | f1ofun 6718 |
. . . . . . . . . . . 12
⊢ (◡𝐹:𝐴–1-1-onto→𝐶 → Fun ◡𝐹) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun ◡𝐹) |
87 | 86 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Fun ◡𝐹) |
88 | | elinel2 4130 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin) |
89 | 88 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin) |
90 | | imafi 8958 |
. . . . . . . . . 10
⊢ ((Fun
◡𝐹 ∧ 𝑦 ∈ Fin) → (◡𝐹 “ 𝑦) ∈ Fin) |
91 | 87, 89, 90 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ Fin) |
92 | 82, 91 | elind 4128 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
93 | 92 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
94 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷) |
95 | 8, 94 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) |
96 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin) |
97 | 95, 96 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
98 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛+∞ |
99 | | nfmpt1 5182 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(𝑛 ∈ 𝐶 ↦ 𝐷) |
100 | 99 | nfrn 5861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛ran
(𝑛 ∈ 𝐶 ↦ 𝐷) |
101 | 98, 100 | nfel 2921 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛+∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷) |
102 | 101 | nfn 1860 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷) |
103 | 19, 102 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) |
104 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑦 ∈ (𝒫 𝐴 ∩ Fin) |
105 | 103, 104 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) |
106 | 91 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ∈ Fin) |
107 | | f1of1 6715 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) |
108 | 2, 107 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
109 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶–1-1→𝐴) |
110 | 80 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((◡𝐹 “ 𝑦) ∈ 𝒫 𝐶 ↔ (◡𝐹 “ 𝑦) ⊆ 𝐶)) |
111 | 82, 110 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (◡𝐹 “ 𝑦) ⊆ 𝐶) |
112 | | f1ores 6730 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐶–1-1→𝐴 ∧ (◡𝐹 “ 𝑦) ⊆ 𝐶) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦))) |
113 | 109, 111,
112 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦))) |
114 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐶–onto→𝐴) |
115 | | elpwinss 42597 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ⊆ 𝐴) |
116 | 115 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ⊆ 𝐴) |
117 | | foimacnv 6733 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐶–onto→𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
118 | 114, 116,
117 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
119 | 118 | f1oeq3d 6713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→(𝐹 “ (◡𝐹 “ 𝑦)) ↔ (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦)) |
120 | 113, 119 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦) |
121 | 120 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ (◡𝐹 “ 𝑦)):(◡𝐹 “ 𝑦)–1-1-onto→𝑦) |
122 | 78 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → (◡𝐹 “ 𝑦) ∈ V) |
123 | | simpll 764 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → 𝜑) |
124 | 92 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
125 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → 𝑛 ∈ (◡𝐹 “ 𝑦)) |
126 | 123, 124,
125 | jca31 515 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦))) |
127 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↔ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin))) |
128 | 127 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ (𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)))) |
129 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ (◡𝐹 “ 𝑦))) |
130 | 128, 129 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) ↔ ((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)))) |
131 | | reseq2 5886 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 ↾ 𝑥) = (𝐹 ↾ (◡𝐹 “ 𝑦))) |
132 | 131 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 ↾ 𝑥)‘𝑛) = ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛)) |
133 | 132 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝐹 ↾ 𝑥)‘𝑛) = 𝐺 ↔ ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺)) |
134 | 130, 133 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) ↔ (((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺))) |
135 | | fvres 6793 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑥 → ((𝐹 ↾ 𝑥)‘𝑛) = (𝐹‘𝑛)) |
136 | 135 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = (𝐹‘𝑛)) |
137 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → 𝜑) |
138 | | elpwinss 42597 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ⊆ 𝐶) |
139 | 138 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ⊆ 𝐶) |
140 | 139 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐶) |
141 | 137, 140,
25 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → (𝐹‘𝑛) = 𝐺) |
142 | 136, 141 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) |
143 | 134, 142 | vtoclg 3505 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ 𝑦) ∈ V → (((𝜑 ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺)) |
144 | 122, 126,
143 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺) |
145 | 144 | adantllr 716 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑛 ∈ (◡𝐹 “ 𝑦)) → ((𝐹 ↾ (◡𝐹 “ 𝑦))‘𝑛) = 𝐺) |
146 | 78 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ V) |
147 | | simpll 764 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷))) |
148 | 81 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ 𝒫 𝐶) |
149 | 106 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ Fin) |
150 | 148, 149 | elind 4128 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) |
151 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝑦) |
152 | 118 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))) |
153 | 152 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑦 = (𝐹 “ (◡𝐹 “ 𝑦))) |
154 | 151, 153 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) |
155 | 154 | adantllr 716 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) |
156 | 147, 150,
155 | jca31 515 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦)))) |
157 | 127 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ↔ ((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)))) |
158 | | imaeq2 5965 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) |
159 | 158 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝑘 ∈ (𝐹 “ 𝑥) ↔ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦)))) |
160 | 157, 159 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) ↔ (((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))))) |
161 | 160 | imbi1d 342 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐹 “ 𝑦) → (((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) ↔ ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) → 𝐵 ∈ ℂ))) |
162 | | rge0ssre 13188 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ ℝ |
163 | | ax-resscn 10928 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
164 | 162, 163 | sstri 3930 |
. . . . . . . . . . . 12
⊢
(0[,)+∞) ⊆ ℂ |
165 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝜑) |
166 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
167 | | fimass 6621 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐶⟶𝐴 → (𝐹 “ 𝑥) ⊆ 𝐴) |
168 | 23, 167 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 “ 𝑥) ⊆ 𝐴) |
169 | 168 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → (𝐹 “ 𝑥) ⊆ 𝐴) |
170 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ (𝐹 “ 𝑥)) |
171 | 169, 170 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ 𝐴) |
172 | 171 | adantllr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝑘 ∈ 𝐴) |
173 | | foelrni 6831 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐶–onto→𝐴 ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
174 | 4, 173 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
175 | 174 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → ∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘) |
176 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛 𝑘 ∈ 𝐴 |
177 | 103, 176 | nfan 1902 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) |
178 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛 𝐵 ∈
(0[,)+∞) |
179 | | csbid 3845 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
⦋𝑘 /
𝑘⦌𝐵 = 𝐵 |
180 | 179 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐵 = ⦋𝑘 / 𝑘⦌𝐵 |
181 | 180 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = ⦋𝑘 / 𝑘⦌𝐵) |
182 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑛) = 𝑘 → (𝐹‘𝑛) = 𝑘) |
183 | 182 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑛) = 𝑘 → 𝑘 = (𝐹‘𝑛)) |
184 | 183 | csbeq1d 3836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑛) = 𝑘 → ⦋𝑘 / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
185 | 184 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → ⦋𝑘 / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
186 | 38 | idi 1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
187 | 186 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐷) |
188 | 181, 185,
187 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = 𝐷) |
189 | 188 | 3adant1r 1176 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 = 𝐷) |
190 | | 0xr 11022 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℝ* |
191 | 190 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 0 ∈
ℝ*) |
192 | | pnfxr 11029 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ +∞
∈ ℝ* |
193 | 192 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ℝ*) |
194 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈
(0[,]+∞)) |
195 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬ 𝐷 ∈
(0[,)+∞)) |
196 | 191, 193,
194, 195 | eliccnelico 43067 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 = +∞) |
197 | 196 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞ =
𝐷) |
198 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝑛 ∈ 𝐶) |
199 | 64 | idi 1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,]+∞)) |
200 | 14 | elrnmpt1 5867 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ 𝐶 ∧ 𝐷 ∈ (0[,]+∞)) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
201 | 198, 199,
200 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
202 | 201 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → 𝐷 ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
203 | 197, 202 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
204 | 203 | adantllr 716 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → +∞
∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) |
205 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) ∧ ¬ 𝐷 ∈ (0[,)+∞)) → ¬
+∞ ∈ ran (𝑛
∈ 𝐶 ↦ 𝐷)) |
206 | 204, 205 | condan 815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶) → 𝐷 ∈ (0[,)+∞)) |
207 | 206 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐷 ∈ (0[,)+∞)) |
208 | 189, 207 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) = 𝑘) → 𝐵 ∈ (0[,)+∞)) |
209 | 208 | 3exp 1118 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → (𝑛 ∈ 𝐶 → ((𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞)))) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝐶 → ((𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞)))) |
211 | 177, 178,
210 | rexlimd 3250 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → (∃𝑛 ∈ 𝐶 (𝐹‘𝑛) = 𝑘 → 𝐵 ∈ (0[,)+∞))) |
212 | 175, 211 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
213 | 165, 166,
172, 212 | syl21anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ (0[,)+∞)) |
214 | 164, 213 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) |
215 | 214 | idi 1 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ 𝑥)) → 𝐵 ∈ ℂ) |
216 | 161, 215 | vtoclg 3505 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ∈ V → ((((𝜑 ∧ ¬ +∞ ∈ ran (𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ (◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑘 ∈ (𝐹 “ (◡𝐹 “ 𝑦))) → 𝐵 ∈ ℂ)) |
217 | 146, 156,
216 | sylc 65 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
218 | 97, 105, 36, 106, 121, 145, 217 | fsumf1of 43115 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) |
219 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ 𝑦) → Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) |
220 | 219 | rspceeqv 3575 |
. . . . . . 7
⊢ (((◡𝐹 “ 𝑦) ∈ (𝒫 𝐶 ∩ Fin) ∧ Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ (◡𝐹 “ 𝑦)𝐷) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
221 | 93, 218, 220 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥 ∈ (𝒫 𝐶 ∩ Fin)Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
222 | 71, 221 | rnmptssrn 42719 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵) ⊆ ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷)) |
223 | | sumex 15399 |
. . . . . . 7
⊢
Σ𝑛 ∈
𝑥 𝐷 ∈ V |
224 | 223 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛 ∈ 𝑥 𝐷 ∈ V) |
225 | 6, 168 | ssexd 5248 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 “ 𝑥) ∈ V) |
226 | | elpwg 4536 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑥) ∈ V → ((𝐹 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
227 | 225, 226 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
228 | 168, 227 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 “ 𝑥) ∈ 𝒫 𝐴) |
229 | 228 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ 𝒫 𝐴) |
230 | 23 | ffund 6604 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) |
231 | 230 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Fun 𝐹) |
232 | | elinel2 4130 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝐶 ∩ Fin) → 𝑥 ∈ Fin) |
233 | 232 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin) |
234 | | imafi 8958 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ Fin) → (𝐹 “ 𝑥) ∈ Fin) |
235 | 231, 233,
234 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ Fin) |
236 | 229, 235 | elind 4128 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin)) |
237 | 236 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin)) |
238 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑥 ∈ (𝒫 𝐶 ∩ Fin) |
239 | 95, 238 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) |
240 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑥 ∈ (𝒫 𝐶 ∩ Fin) |
241 | 103, 240 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) |
242 | 232 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑥 ∈ Fin) |
243 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐶–1-1→𝐴) |
244 | | f1ores 6730 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐶–1-1→𝐴 ∧ 𝑥 ⊆ 𝐶) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
245 | 243, 139,
244 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
246 | 245 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→(𝐹 “ 𝑥)) |
247 | 142 | adantllr 716 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑛 ∈ 𝑥) → ((𝐹 ↾ 𝑥)‘𝑛) = 𝐺) |
248 | 239, 241,
36, 242, 246, 247, 214 | fsumf1of 43115 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵 = Σ𝑛 ∈ 𝑥 𝐷) |
249 | 248 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) |
250 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑦 = (𝐹 “ 𝑥) → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) |
251 | 250 | rspceeqv 3575 |
. . . . . . 7
⊢ (((𝐹 “ 𝑥) ∈ (𝒫 𝐴 ∩ Fin) ∧ Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ (𝐹 “ 𝑥)𝐵) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ 𝑦 𝐵) |
252 | 237, 249,
251 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) ∧ 𝑥 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)Σ𝑛 ∈ 𝑥 𝐷 = Σ𝑘 ∈ 𝑦 𝐵) |
253 | 224, 252 | rnmptssrn 42719 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷) ⊆ ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵)) |
254 | 222, 253 | eqssd 3938 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵) = ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷)) |
255 | 254 | supeq1d 9205 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵), ℝ*, < ) = sup(ran
(𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷), ℝ*, <
)) |
256 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐴 ∈ V) |
257 | 95, 256, 212 | sge0revalmpt 43916 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑦 𝐵), ℝ*, <
)) |
258 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) → 𝐶 ∈ 𝑉) |
259 | 103, 258,
206 | sge0revalmpt 43916 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷)) = sup(ran (𝑥 ∈ (𝒫 𝐶 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 𝐷), ℝ*, <
)) |
260 | 255, 257,
259 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
(𝑛 ∈ 𝐶 ↦ 𝐷)) →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
261 | 69, 260 | pm2.61dan 810 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |