MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2f Structured version   Visualization version   GIF version

Theorem fvmpt2f 6763
Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypothesis
Ref Expression
fvmpt2f.0 𝑥𝐴
Assertion
Ref Expression
fvmpt2f ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3885 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3895 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2syl6eq 2872 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2f.0 . . 3 𝑥𝐴
5 nfcv 2977 . . 3 𝑦𝐴
6 nfcv 2977 . . 3 𝑦𝐵
7 nfcsb1v 3906 . . 3 𝑥𝑦 / 𝑥𝐵
8 csbeq1a 3896 . . 3 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
94, 5, 6, 7, 8cbvmptf 5157 . 2 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 6760 1 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  csb 3882  cmpt 5138  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357
This theorem is referenced by:  offval2f  7415  fmptcof2  30396  funcnvmpt  30406  esumc  31305
  Copyright terms: Public domain W3C validator