| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt2f | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
| Ref | Expression |
|---|---|
| fvmpt2f.0 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| fvmpt2f | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3856 | . . 3 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) | |
| 2 | csbid 3866 | . . 3 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2780 | . 2 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
| 4 | fvmpt2f.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 6 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 7 | nfcsb1v 3877 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 8 | csbeq1a 3867 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 9 | 4, 5, 6, 7, 8 | cbvmptf 5195 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 10 | 3, 9 | fvmptg 6932 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3853 ↦ cmpt 5176 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: offval2f 7632 fmptcof2 32614 funcnvmpt 32624 esumc 34017 fvmpt2df 45250 fvmpt4d 45254 smfpimltxrmptf 46740 smfpimgtxrmptf 46766 |
| Copyright terms: Public domain | W3C validator |