| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt2f | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
| Ref | Expression |
|---|---|
| fvmpt2f.0 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| fvmpt2f | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3877 | . . 3 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑥 / 𝑥⦌𝐵) | |
| 2 | csbid 3887 | . . 3 ⊢ ⦋𝑥 / 𝑥⦌𝐵 = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2786 | . 2 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
| 4 | fvmpt2f.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 6 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 7 | nfcsb1v 3898 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 8 | csbeq1a 3888 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 9 | 4, 5, 6, 7, 8 | cbvmptf 5221 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 10 | 3, 9 | fvmptg 6984 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ⦋csb 3874 ↦ cmpt 5201 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 |
| This theorem is referenced by: offval2f 7686 fmptcof2 32635 funcnvmpt 32645 esumc 34082 fvmpt2df 45296 fvmpt4d 45300 smfpimltxrmptf 46787 smfpimgtxrmptf 46813 |
| Copyright terms: Public domain | W3C validator |