MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2f Structured version   Visualization version   GIF version

Theorem fvmpt2f 6876
Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypothesis
Ref Expression
fvmpt2f.0 𝑥𝐴
Assertion
Ref Expression
fvmpt2f ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3835 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3845 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2794 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2f.0 . . 3 𝑥𝐴
5 nfcv 2907 . . 3 𝑦𝐴
6 nfcv 2907 . . 3 𝑦𝐵
7 nfcsb1v 3857 . . 3 𝑥𝑦 / 𝑥𝐵
8 csbeq1a 3846 . . 3 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
94, 5, 6, 7, 8cbvmptf 5183 . 2 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 6873 1 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  csb 3832  cmpt 5157  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  offval2f  7548  fmptcof2  30994  funcnvmpt  31004  esumc  32019
  Copyright terms: Public domain W3C validator