MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2f Structured version   Visualization version   GIF version

Theorem fvmpt2f 7030
Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypothesis
Ref Expression
fvmpt2f.0 𝑥𝐴
Assertion
Ref Expression
fvmpt2f ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3924 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3934 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2796 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2f.0 . . 3 𝑥𝐴
5 nfcv 2908 . . 3 𝑦𝐴
6 nfcv 2908 . . 3 𝑦𝐵
7 nfcsb1v 3946 . . 3 𝑥𝑦 / 𝑥𝐵
8 csbeq1a 3935 . . 3 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
94, 5, 6, 7, 8cbvmptf 5275 . 2 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 7027 1 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnfc 2893  csb 3921  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  offval2f  7729  fmptcof2  32675  funcnvmpt  32685  esumc  34015  fvmpt2df  45182  fvmpt4d  45186  smfpimltxrmptf  46679  smfpimgtxrmptf  46705
  Copyright terms: Public domain W3C validator