MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2f Structured version   Visualization version   GIF version

Theorem fvmpt2f 6993
Description: Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
Hypothesis
Ref Expression
fvmpt2f.0 𝑥𝐴
Assertion
Ref Expression
fvmpt2f ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)

Proof of Theorem fvmpt2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3891 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3901 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2782 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2f.0 . . 3 𝑥𝐴
5 nfcv 2897 . . 3 𝑦𝐴
6 nfcv 2897 . . 3 𝑦𝐵
7 nfcsb1v 3913 . . 3 𝑥𝑦 / 𝑥𝐵
8 csbeq1a 3902 . . 3 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
94, 5, 6, 7, 8cbvmptf 5250 . 2 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 6990 1 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wnfc 2877  csb 3888  cmpt 5224  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545
This theorem is referenced by:  offval2f  7682  fmptcof2  32391  funcnvmpt  32401  esumc  33579  fvmpt2df  44554  fvmpt4d  44558  smfpimltxrmptf  46051  smfpimgtxrmptf  46077
  Copyright terms: Public domain W3C validator