MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2i Structured version   Visualization version   GIF version

Theorem fvmpt2i 6945
Description: Value of a function given by the maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2i (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3849 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3859 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2784 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 mptrcl.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2895 . . . 4 𝑦𝐵
6 nfcsb1v 3870 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3860 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 5195 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2756 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmpti 6934 1 (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  csb 3846  cmpt 5174   I cid 5513  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fvmpt2  6946  sumfc  15618  fsumf1o  15632  sumss  15633  isumshft  15748  prodfc  15854  fprodf1o  15855  mbfsup  25593  itg2splitlem  25677  dgrle  26176
  Copyright terms: Public domain W3C validator