MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2i Structured version   Visualization version   GIF version

Theorem fvmpt2i 6939
Description: Value of a function given by the maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2i (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3853 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3863 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2eqtrdi 2782 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 mptrcl.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2894 . . . 4 𝑦𝐵
6 nfcsb1v 3874 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3864 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 5193 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2754 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmpti 6928 1 (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  csb 3850  cmpt 5172   I cid 5510  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  fvmpt2  6940  sumfc  15613  fsumf1o  15627  sumss  15628  isumshft  15743  prodfc  15849  fprodf1o  15850  mbfsup  25590  itg2splitlem  25674  dgrle  26173
  Copyright terms: Public domain W3C validator