MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2i Structured version   Visualization version   GIF version

Theorem fvmpt2i 6751
Description: Value of a function given by the maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2i (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3860 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 3870 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2syl6eq 2872 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 mptrcl.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2974 . . . 4 𝑦𝐵
6 nfcsb1v 3881 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 3871 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 5140 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2844 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmpti 6740 1 (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  csb 3857  cmpt 5119   I cid 5432  cfv 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fv 6336
This theorem is referenced by:  fvmpt2  6752  sumfc  15045  fsumf1o  15059  sumss  15060  isumshft  15173  prodfc  15278  fprodf1o  15279  mbfsup  24246  itg2splitlem  24330  dgrle  24818
  Copyright terms: Public domain W3C validator