Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptmulf Structured version   Visualization version   GIF version

Theorem dvmptmulf 40790
Description: Function-builder for derivative, product rule. A version of dvmptmul 24015 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptmulf.ph 𝑥𝜑
dvmptmulf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptmulf.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptmulf.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptmulf.ab (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptmulf.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptmulf.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptmulf.cd (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulf (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑆(𝑥)

Proof of Theorem dvmptmulf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . 5 𝑦(𝐴 · 𝐶)
2 nfcsb1v 3707 . . . . . 6 𝑥𝑦 / 𝑥𝐴
3 nfcv 2907 . . . . . 6 𝑥 ·
4 nfcsb1v 3707 . . . . . 6 𝑥𝑦 / 𝑥𝐶
52, 3, 4nfov 6872 . . . . 5 𝑥(𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)
6 csbeq1a 3700 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3700 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7oveq12d 6860 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝐶) = (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
91, 5, 8cbvmpt 4908 . . . 4 (𝑥𝑋 ↦ (𝐴 · 𝐶)) = (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
109oveq2i 6853 . . 3 (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)))
1110a1i 11 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))))
12 dvmptmulf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
13 dvmptmulf.ph . . . . . 6 𝑥𝜑
14 nfv 2009 . . . . . 6 𝑥 𝑦𝑋
1513, 14nfan 1998 . . . . 5 𝑥(𝜑𝑦𝑋)
162nfel1 2922 . . . . 5 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
1715, 16nfim 1995 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
18 eleq1w 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
1918anbi2d 622 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝑋) ↔ (𝜑𝑦𝑋)))
206eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2119, 20imbi12d 335 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)))
22 dvmptmulf.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2317, 21, 22chvar 2368 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
24 nfcv 2907 . . . . . . 7 𝑥𝑦
2524nfcsb1 3706 . . . . . 6 𝑥𝑦 / 𝑥𝐵
26 nfcv 2907 . . . . . 6 𝑥𝑉
2725, 26nfel 2920 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑉
2815, 27nfim 1995 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
29 csbeq1a 3700 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3029eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
3119, 30imbi12d 335 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐵𝑉) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)))
32 dvmptmulf.b . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑉)
3328, 31, 32chvar 2368 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
34 nfcv 2907 . . . . . . 7 𝑦𝐴
35 csbeq1a 3700 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝑥 / 𝑦𝑦 / 𝑥𝐴)
36 csbco 3701 . . . . . . . . . 10 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝑥 / 𝑥𝐴
37 csbid 3699 . . . . . . . . . 10 𝑥 / 𝑥𝐴 = 𝐴
3836, 37eqtri 2787 . . . . . . . . 9 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴
3938a1i 11 . . . . . . . 8 (𝑦 = 𝑥𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴)
4035, 39eqtrd 2799 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝐴)
412, 34, 40cbvmpt 4908 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐴) = (𝑥𝑋𝐴)
4241oveq2i 6853 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴))
4342a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴)))
44 dvmptmulf.ab . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
45 nfcv 2907 . . . . . 6 𝑦𝐵
4645, 25, 29cbvmpt 4908 . . . . 5 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4746a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵))
4843, 44, 473eqtrd 2803 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑦𝑋𝑦 / 𝑥𝐵))
494nfel1 2922 . . . . 5 𝑥𝑦 / 𝑥𝐶 ∈ ℂ
5015, 49nfim 1995 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
517eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑥𝐶 ∈ ℂ))
5219, 51imbi12d 335 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)))
53 dvmptmulf.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
5450, 52, 53chvar 2368 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
5524nfcsb1 3706 . . . . . 6 𝑥𝑦 / 𝑥𝐷
56 nfcv 2907 . . . . . 6 𝑥𝑊
5755, 56nfel 2920 . . . . 5 𝑥𝑦 / 𝑥𝐷𝑊
5815, 57nfim 1995 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
59 csbeq1a 3700 . . . . . 6 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
6059eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → (𝐷𝑊𝑦 / 𝑥𝐷𝑊))
6119, 60imbi12d 335 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐷𝑊) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)))
62 dvmptmulf.d . . . 4 ((𝜑𝑥𝑋) → 𝐷𝑊)
6358, 61, 62chvar 2368 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
64 nfcv 2907 . . . . . . 7 𝑦𝐶
65 eqcom 2772 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
6665imbi1i 340 . . . . . . . . 9 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶))
67 eqcom 2772 . . . . . . . . . 10 (𝐶 = 𝑦 / 𝑥𝐶𝑦 / 𝑥𝐶 = 𝐶)
6867imbi2i 327 . . . . . . . . 9 ((𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
6966, 68bitri 266 . . . . . . . 8 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
707, 69mpbi 221 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
714, 64, 70cbvmpt 4908 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐶) = (𝑥𝑋𝐶)
7271oveq2i 6853 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶))
7372a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶)))
74 dvmptmulf.cd . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
75 nfcv 2907 . . . . . 6 𝑦𝐷
7675, 55, 59cbvmpt 4908 . . . . 5 (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷)
7776a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷))
7873, 74, 773eqtrd 2803 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑦𝑋𝑦 / 𝑥𝐷))
7912, 23, 33, 48, 54, 63, 78dvmptmul 24015 . 2 (𝜑 → (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))) = (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))))
8025, 3, 4nfov 6872 . . . . 5 𝑥(𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶)
81 nfcv 2907 . . . . 5 𝑥 +
8255, 3, 2nfov 6872 . . . . 5 𝑥(𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)
8380, 81, 82nfov 6872 . . . 4 𝑥((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))
84 nfcv 2907 . . . 4 𝑦((𝐵 · 𝐶) + (𝐷 · 𝐴))
8565imbi1i 340 . . . . . . . 8 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
86 eqcom 2772 . . . . . . . . 9 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
8786imbi2i 327 . . . . . . . 8 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8885, 87bitri 266 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8929, 88mpbi 221 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
9089, 70oveq12d 6860 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) = (𝐵 · 𝐶))
9165imbi1i 340 . . . . . . . 8 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷))
92 eqcom 2772 . . . . . . . . 9 (𝐷 = 𝑦 / 𝑥𝐷𝑦 / 𝑥𝐷 = 𝐷)
9392imbi2i 327 . . . . . . . 8 ((𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9491, 93bitri 266 . . . . . . 7 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9559, 94mpbi 221 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷)
9695, 40oveq12d 6860 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴) = (𝐷 · 𝐴))
9790, 96oveq12d 6860 . . . 4 (𝑦 = 𝑥 → ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)) = ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9883, 84, 97cbvmpt 4908 . . 3 (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9998a1i 11 . 2 (𝜑 → (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
10011, 79, 993eqtrd 2803 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wnf 1878  wcel 2155  csb 3691  {cpr 4336  cmpt 4888  (class class class)co 6842  cc 10187  cr 10188   + caddc 10192   · cmul 10194   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  dvmptfprodlem  40797
  Copyright terms: Public domain W3C validator