Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptmulf Structured version   Visualization version   GIF version

Theorem dvmptmulf 42579
Description: Function-builder for derivative, product rule. A version of dvmptmul 24564 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptmulf.ph 𝑥𝜑
dvmptmulf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptmulf.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptmulf.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptmulf.ab (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptmulf.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptmulf.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptmulf.cd (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulf (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑆(𝑥)

Proof of Theorem dvmptmulf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . . . 5 𝑦(𝐴 · 𝐶)
2 nfcsb1v 3852 . . . . . 6 𝑥𝑦 / 𝑥𝐴
3 nfcv 2955 . . . . . 6 𝑥 ·
4 nfcsb1v 3852 . . . . . 6 𝑥𝑦 / 𝑥𝐶
52, 3, 4nfov 7165 . . . . 5 𝑥(𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)
6 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7oveq12d 7153 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝐶) = (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
91, 5, 8cbvmpt 5131 . . . 4 (𝑥𝑋 ↦ (𝐴 · 𝐶)) = (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
109oveq2i 7146 . . 3 (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)))
1110a1i 11 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))))
12 dvmptmulf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
13 dvmptmulf.ph . . . . . 6 𝑥𝜑
14 nfv 1915 . . . . . 6 𝑥 𝑦𝑋
1513, 14nfan 1900 . . . . 5 𝑥(𝜑𝑦𝑋)
162nfel1 2971 . . . . 5 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
1715, 16nfim 1897 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
18 eleq1w 2872 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
1918anbi2d 631 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝑋) ↔ (𝜑𝑦𝑋)))
206eleq1d 2874 . . . . 5 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2119, 20imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)))
22 dvmptmulf.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2317, 21, 22chvarfv 2240 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
24 nfcv 2955 . . . . . . 7 𝑥𝑦
2524nfcsb1 3851 . . . . . 6 𝑥𝑦 / 𝑥𝐵
26 nfcv 2955 . . . . . 6 𝑥𝑉
2725, 26nfel 2969 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑉
2815, 27nfim 1897 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
29 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3029eleq1d 2874 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
3119, 30imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐵𝑉) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)))
32 dvmptmulf.b . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑉)
3328, 31, 32chvarfv 2240 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
34 nfcv 2955 . . . . . . 7 𝑦𝐴
35 csbeq1a 3842 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝑥 / 𝑦𝑦 / 𝑥𝐴)
36 csbcow 3843 . . . . . . . . . 10 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝑥 / 𝑥𝐴
37 csbid 3841 . . . . . . . . . 10 𝑥 / 𝑥𝐴 = 𝐴
3836, 37eqtri 2821 . . . . . . . . 9 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴
3938a1i 11 . . . . . . . 8 (𝑦 = 𝑥𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴)
4035, 39eqtrd 2833 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝐴)
412, 34, 40cbvmpt 5131 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐴) = (𝑥𝑋𝐴)
4241oveq2i 7146 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴))
4342a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴)))
44 dvmptmulf.ab . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
45 nfcv 2955 . . . . . 6 𝑦𝐵
4645, 25, 29cbvmpt 5131 . . . . 5 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4746a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵))
4843, 44, 473eqtrd 2837 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑦𝑋𝑦 / 𝑥𝐵))
494nfel1 2971 . . . . 5 𝑥𝑦 / 𝑥𝐶 ∈ ℂ
5015, 49nfim 1897 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
517eleq1d 2874 . . . . 5 (𝑥 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑥𝐶 ∈ ℂ))
5219, 51imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)))
53 dvmptmulf.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
5450, 52, 53chvarfv 2240 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
5524nfcsb1 3851 . . . . . 6 𝑥𝑦 / 𝑥𝐷
56 nfcv 2955 . . . . . 6 𝑥𝑊
5755, 56nfel 2969 . . . . 5 𝑥𝑦 / 𝑥𝐷𝑊
5815, 57nfim 1897 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
59 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
6059eleq1d 2874 . . . . 5 (𝑥 = 𝑦 → (𝐷𝑊𝑦 / 𝑥𝐷𝑊))
6119, 60imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐷𝑊) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)))
62 dvmptmulf.d . . . 4 ((𝜑𝑥𝑋) → 𝐷𝑊)
6358, 61, 62chvarfv 2240 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
64 nfcv 2955 . . . . . . 7 𝑦𝐶
65 eqcom 2805 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
6665imbi1i 353 . . . . . . . . 9 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶))
67 eqcom 2805 . . . . . . . . . 10 (𝐶 = 𝑦 / 𝑥𝐶𝑦 / 𝑥𝐶 = 𝐶)
6867imbi2i 339 . . . . . . . . 9 ((𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
6966, 68bitri 278 . . . . . . . 8 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
707, 69mpbi 233 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
714, 64, 70cbvmpt 5131 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐶) = (𝑥𝑋𝐶)
7271oveq2i 7146 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶))
7372a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶)))
74 dvmptmulf.cd . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
75 nfcv 2955 . . . . . 6 𝑦𝐷
7675, 55, 59cbvmpt 5131 . . . . 5 (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷)
7776a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷))
7873, 74, 773eqtrd 2837 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑦𝑋𝑦 / 𝑥𝐷))
7912, 23, 33, 48, 54, 63, 78dvmptmul 24564 . 2 (𝜑 → (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))) = (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))))
8025, 3, 4nfov 7165 . . . . 5 𝑥(𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶)
81 nfcv 2955 . . . . 5 𝑥 +
8255, 3, 2nfov 7165 . . . . 5 𝑥(𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)
8380, 81, 82nfov 7165 . . . 4 𝑥((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))
84 nfcv 2955 . . . 4 𝑦((𝐵 · 𝐶) + (𝐷 · 𝐴))
8565imbi1i 353 . . . . . . . 8 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
86 eqcom 2805 . . . . . . . . 9 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
8786imbi2i 339 . . . . . . . 8 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8885, 87bitri 278 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8929, 88mpbi 233 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
9089, 70oveq12d 7153 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) = (𝐵 · 𝐶))
9165imbi1i 353 . . . . . . . 8 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷))
92 eqcom 2805 . . . . . . . . 9 (𝐷 = 𝑦 / 𝑥𝐷𝑦 / 𝑥𝐷 = 𝐷)
9392imbi2i 339 . . . . . . . 8 ((𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9491, 93bitri 278 . . . . . . 7 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9559, 94mpbi 233 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷)
9695, 40oveq12d 7153 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴) = (𝐷 · 𝐴))
9790, 96oveq12d 7153 . . . 4 (𝑦 = 𝑥 → ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)) = ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9883, 84, 97cbvmpt 5131 . . 3 (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9998a1i 11 . 2 (𝜑 → (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
10011, 79, 993eqtrd 2837 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  csb 3828  {cpr 4527  cmpt 5110  (class class class)co 7135  cc 10524  cr 10525   + caddc 10529   · cmul 10531   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvmptfprodlem  42586
  Copyright terms: Public domain W3C validator