Step | Hyp | Ref
| Expression |
1 | | nfcv 2920 |
. . . . 5
⊢
Ⅎ𝑦(𝐴 · 𝐶) |
2 | | nfcsb1v 3832 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 |
3 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑥
· |
4 | | nfcsb1v 3832 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
5 | 2, 3, 4 | nfov 7187 |
. . . . 5
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶) |
6 | | csbeq1a 3822 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) |
7 | | csbeq1a 3822 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
8 | 6, 7 | oveq12d 7175 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 · 𝐶) = (⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶)) |
9 | 1, 5, 8 | cbvmpt 5138 |
. . . 4
⊢ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶)) = (𝑦 ∈ 𝑋 ↦ (⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶)) |
10 | 9 | oveq2i 7168 |
. . 3
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦 ∈ 𝑋 ↦ (⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶))) |
11 | 10 | a1i 11 |
. 2
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦 ∈ 𝑋 ↦ (⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶)))) |
12 | | dvmptmulf.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
13 | | dvmptmulf.ph |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
14 | | nfv 1916 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ 𝑋 |
15 | 13, 14 | nfan 1901 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑋) |
16 | 2 | nfel1 2936 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ |
17 | 15, 16 | nfim 1898 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
18 | | eleq1w 2835 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋)) |
19 | 18 | anbi2d 631 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ 𝑦 ∈ 𝑋))) |
20 | 6 | eleq1d 2837 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ)) |
21 | 19, 20 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ))) |
22 | | dvmptmulf.a |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
23 | 17, 21, 22 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ ℂ) |
24 | | nfcv 2920 |
. . . . . . 7
⊢
Ⅎ𝑥𝑦 |
25 | 24 | nfcsb1 3831 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
26 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑥𝑉 |
27 | 25, 26 | nfel 2934 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉 |
28 | 15, 27 | nfim 1898 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉) |
29 | | csbeq1a 3822 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
30 | 29 | eleq1d 2837 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑉 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉)) |
31 | 19, 30 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉))) |
32 | | dvmptmulf.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
33 | 28, 31, 32 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉) |
34 | | nfcv 2920 |
. . . . . . 7
⊢
Ⅎ𝑦𝐴 |
35 | | csbeq1a 3822 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑥 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐴) |
36 | | csbcow 3823 |
. . . . . . . . . 10
⊢
⦋𝑥 /
𝑦⦌⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑥 / 𝑥⦌𝐴 |
37 | | csbid 3821 |
. . . . . . . . . 10
⊢
⦋𝑥 /
𝑥⦌𝐴 = 𝐴 |
38 | 36, 37 | eqtri 2782 |
. . . . . . . . 9
⊢
⦋𝑥 /
𝑦⦌⦋𝑦 / 𝑥⦌𝐴 = 𝐴 |
39 | 38 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ⦋𝑥 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐴 = 𝐴) |
40 | 35, 39 | eqtrd 2794 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐴) |
41 | 2, 34, 40 | cbvmpt 5138 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
42 | 41 | oveq2i 7168 |
. . . . 5
⊢ (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) |
43 | 42 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) |
44 | | dvmptmulf.ab |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
45 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑦𝐵 |
46 | 45, 25, 29 | cbvmpt 5138 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
47 | 46 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
48 | 43, 44, 47 | 3eqtrd 2798 |
. . 3
⊢ (𝜑 → (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐴)) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐵)) |
49 | 4 | nfel1 2936 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ |
50 | 15, 49 | nfim 1898 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
51 | 7 | eleq1d 2837 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ)) |
52 | 19, 51 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ))) |
53 | | dvmptmulf.c |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
54 | 50, 52, 53 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
55 | 24 | nfcsb1 3831 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 |
56 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑥𝑊 |
57 | 55, 56 | nfel 2934 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐷 ∈ 𝑊 |
58 | 15, 57 | nfim 1898 |
. . . 4
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐷 ∈ 𝑊) |
59 | | csbeq1a 3822 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) |
60 | 59 | eleq1d 2837 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐷 ∈ 𝑊 ↔ ⦋𝑦 / 𝑥⦌𝐷 ∈ 𝑊)) |
61 | 19, 60 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐷 ∈ 𝑊))) |
62 | | dvmptmulf.d |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) |
63 | 58, 61, 62 | chvarfv 2241 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐷 ∈ 𝑊) |
64 | | nfcv 2920 |
. . . . . . 7
⊢
Ⅎ𝑦𝐶 |
65 | | eqcom 2766 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
66 | 65 | imbi1i 353 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) ↔ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶)) |
67 | | eqcom 2766 |
. . . . . . . . . 10
⊢ (𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
68 | 67 | imbi2i 339 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶)) |
69 | 66, 68 | bitri 278 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶)) |
70 | 7, 69 | mpbi 233 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
71 | 4, 64, 70 | cbvmpt 5138 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶) |
72 | 71 | oveq2i 7168 |
. . . . 5
⊢ (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐶)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) |
73 | 72 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐶)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶))) |
74 | | dvmptmulf.cd |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
75 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑦𝐷 |
76 | 75, 55, 59 | cbvmpt 5138 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ 𝐷) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐷) |
77 | 76 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐷) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐷)) |
78 | 73, 74, 77 | 3eqtrd 2798 |
. . 3
⊢ (𝜑 → (𝑆 D (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐶)) = (𝑦 ∈ 𝑋 ↦ ⦋𝑦 / 𝑥⦌𝐷)) |
79 | 12, 23, 33, 48, 54, 63, 78 | dvmptmul 24675 |
. 2
⊢ (𝜑 → (𝑆 D (𝑦 ∈ 𝑋 ↦ (⦋𝑦 / 𝑥⦌𝐴 · ⦋𝑦 / 𝑥⦌𝐶))) = (𝑦 ∈ 𝑋 ↦ ((⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) + (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴)))) |
80 | 25, 3, 4 | nfov 7187 |
. . . . 5
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) |
81 | | nfcv 2920 |
. . . . 5
⊢
Ⅎ𝑥
+ |
82 | 55, 3, 2 | nfov 7187 |
. . . . 5
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴) |
83 | 80, 81, 82 | nfov 7187 |
. . . 4
⊢
Ⅎ𝑥((⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) + (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴)) |
84 | | nfcv 2920 |
. . . 4
⊢
Ⅎ𝑦((𝐵 · 𝐶) + (𝐷 · 𝐴)) |
85 | 65 | imbi1i 353 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
86 | | eqcom 2766 |
. . . . . . . . 9
⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
87 | 86 | imbi2i 339 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
88 | 85, 87 | bitri 278 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
89 | 29, 88 | mpbi 233 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
90 | 89, 70 | oveq12d 7175 |
. . . . 5
⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) = (𝐵 · 𝐶)) |
91 | 65 | imbi1i 353 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) ↔ (𝑦 = 𝑥 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷)) |
92 | | eqcom 2766 |
. . . . . . . . 9
⊢ (𝐷 = ⦋𝑦 / 𝑥⦌𝐷 ↔ ⦋𝑦 / 𝑥⦌𝐷 = 𝐷) |
93 | 92 | imbi2i 339 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐷 = 𝐷)) |
94 | 91, 93 | bitri 278 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 → 𝐷 = ⦋𝑦 / 𝑥⦌𝐷) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐷 = 𝐷)) |
95 | 59, 94 | mpbi 233 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐷 = 𝐷) |
96 | 95, 40 | oveq12d 7175 |
. . . . 5
⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴) = (𝐷 · 𝐴)) |
97 | 90, 96 | oveq12d 7175 |
. . . 4
⊢ (𝑦 = 𝑥 → ((⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) + (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴)) = ((𝐵 · 𝐶) + (𝐷 · 𝐴))) |
98 | 83, 84, 97 | cbvmpt 5138 |
. . 3
⊢ (𝑦 ∈ 𝑋 ↦ ((⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) + (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))) |
99 | 98 | a1i 11 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝑋 ↦ ((⦋𝑦 / 𝑥⦌𝐵 · ⦋𝑦 / 𝑥⦌𝐶) + (⦋𝑦 / 𝑥⦌𝐷 · ⦋𝑦 / 𝑥⦌𝐴))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |
100 | 11, 79, 99 | 3eqtrd 2798 |
1
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) |