Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptmulf Structured version   Visualization version   GIF version

Theorem dvmptmulf 45935
Description: Function-builder for derivative, product rule. A version of dvmptmul 25865 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptmulf.ph 𝑥𝜑
dvmptmulf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptmulf.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptmulf.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptmulf.ab (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptmulf.c ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
dvmptmulf.d ((𝜑𝑥𝑋) → 𝐷𝑊)
dvmptmulf.cd (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptmulf (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑆(𝑥)

Proof of Theorem dvmptmulf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . 5 𝑦(𝐴 · 𝐶)
2 nfcsb1v 3886 . . . . . 6 𝑥𝑦 / 𝑥𝐴
3 nfcv 2891 . . . . . 6 𝑥 ·
4 nfcsb1v 3886 . . . . . 6 𝑥𝑦 / 𝑥𝐶
52, 3, 4nfov 7417 . . . . 5 𝑥(𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)
6 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
7 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7oveq12d 7405 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝐶) = (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
91, 5, 8cbvmpt 5209 . . . 4 (𝑥𝑋 ↦ (𝐴 · 𝐶)) = (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))
109oveq2i 7398 . . 3 (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶)))
1110a1i 11 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))))
12 dvmptmulf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
13 dvmptmulf.ph . . . . . 6 𝑥𝜑
14 nfv 1914 . . . . . 6 𝑥 𝑦𝑋
1513, 14nfan 1899 . . . . 5 𝑥(𝜑𝑦𝑋)
162nfel1 2908 . . . . 5 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
1715, 16nfim 1896 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
18 eleq1w 2811 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑋𝑦𝑋))
1918anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝑋) ↔ (𝜑𝑦𝑋)))
206eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2119, 20imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)))
22 dvmptmulf.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2317, 21, 22chvarfv 2241 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴 ∈ ℂ)
24 nfcv 2891 . . . . . . 7 𝑥𝑦
2524nfcsb1 3885 . . . . . 6 𝑥𝑦 / 𝑥𝐵
26 nfcv 2891 . . . . . 6 𝑥𝑉
2725, 26nfel 2906 . . . . 5 𝑥𝑦 / 𝑥𝐵𝑉
2815, 27nfim 1896 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
29 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
3029eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
3119, 30imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐵𝑉) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)))
32 dvmptmulf.b . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑉)
3328, 31, 32chvarfv 2241 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐵𝑉)
34 nfcv 2891 . . . . . . 7 𝑦𝐴
35 csbeq1a 3876 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝑥 / 𝑦𝑦 / 𝑥𝐴)
36 csbcow 3877 . . . . . . . . . 10 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝑥 / 𝑥𝐴
37 csbid 3875 . . . . . . . . . 10 𝑥 / 𝑥𝐴 = 𝐴
3836, 37eqtri 2752 . . . . . . . . 9 𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴
3938a1i 11 . . . . . . . 8 (𝑦 = 𝑥𝑥 / 𝑦𝑦 / 𝑥𝐴 = 𝐴)
4035, 39eqtrd 2764 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐴 = 𝐴)
412, 34, 40cbvmpt 5209 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐴) = (𝑥𝑋𝐴)
4241oveq2i 7398 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴))
4342a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑆 D (𝑥𝑋𝐴)))
44 dvmptmulf.ab . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
45 nfcv 2891 . . . . . 6 𝑦𝐵
4645, 25, 29cbvmpt 5209 . . . . 5 (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵)
4746a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐵) = (𝑦𝑋𝑦 / 𝑥𝐵))
4843, 44, 473eqtrd 2768 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐴)) = (𝑦𝑋𝑦 / 𝑥𝐵))
494nfel1 2908 . . . . 5 𝑥𝑦 / 𝑥𝐶 ∈ ℂ
5015, 49nfim 1896 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
517eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑥𝐶 ∈ ℂ))
5219, 51imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)))
53 dvmptmulf.c . . . 4 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
5450, 52, 53chvarfv 2241 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐶 ∈ ℂ)
5524nfcsb1 3885 . . . . . 6 𝑥𝑦 / 𝑥𝐷
56 nfcv 2891 . . . . . 6 𝑥𝑊
5755, 56nfel 2906 . . . . 5 𝑥𝑦 / 𝑥𝐷𝑊
5815, 57nfim 1896 . . . 4 𝑥((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
59 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷)
6059eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → (𝐷𝑊𝑦 / 𝑥𝐷𝑊))
6119, 60imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝑋) → 𝐷𝑊) ↔ ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)))
62 dvmptmulf.d . . . 4 ((𝜑𝑥𝑋) → 𝐷𝑊)
6358, 61, 62chvarfv 2241 . . 3 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐷𝑊)
64 nfcv 2891 . . . . . . 7 𝑦𝐶
65 eqcom 2736 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
6665imbi1i 349 . . . . . . . . 9 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶))
67 eqcom 2736 . . . . . . . . . 10 (𝐶 = 𝑦 / 𝑥𝐶𝑦 / 𝑥𝐶 = 𝐶)
6867imbi2i 336 . . . . . . . . 9 ((𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
6966, 68bitri 275 . . . . . . . 8 ((𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶))
707, 69mpbi 230 . . . . . . 7 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
714, 64, 70cbvmpt 5209 . . . . . 6 (𝑦𝑋𝑦 / 𝑥𝐶) = (𝑥𝑋𝐶)
7271oveq2i 7398 . . . . 5 (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶))
7372a1i 11 . . . 4 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑆 D (𝑥𝑋𝐶)))
74 dvmptmulf.cd . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
75 nfcv 2891 . . . . . 6 𝑦𝐷
7675, 55, 59cbvmpt 5209 . . . . 5 (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷)
7776a1i 11 . . . 4 (𝜑 → (𝑥𝑋𝐷) = (𝑦𝑋𝑦 / 𝑥𝐷))
7873, 74, 773eqtrd 2768 . . 3 (𝜑 → (𝑆 D (𝑦𝑋𝑦 / 𝑥𝐶)) = (𝑦𝑋𝑦 / 𝑥𝐷))
7912, 23, 33, 48, 54, 63, 78dvmptmul 25865 . 2 (𝜑 → (𝑆 D (𝑦𝑋 ↦ (𝑦 / 𝑥𝐴 · 𝑦 / 𝑥𝐶))) = (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))))
8025, 3, 4nfov 7417 . . . . 5 𝑥(𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶)
81 nfcv 2891 . . . . 5 𝑥 +
8255, 3, 2nfov 7417 . . . . 5 𝑥(𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)
8380, 81, 82nfov 7417 . . . 4 𝑥((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))
84 nfcv 2891 . . . 4 𝑦((𝐵 · 𝐶) + (𝐷 · 𝐴))
8565imbi1i 349 . . . . . . . 8 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
86 eqcom 2736 . . . . . . . . 9 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
8786imbi2i 336 . . . . . . . 8 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8885, 87bitri 275 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
8929, 88mpbi 230 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
9089, 70oveq12d 7405 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) = (𝐵 · 𝐶))
9165imbi1i 349 . . . . . . . 8 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷))
92 eqcom 2736 . . . . . . . . 9 (𝐷 = 𝑦 / 𝑥𝐷𝑦 / 𝑥𝐷 = 𝐷)
9392imbi2i 336 . . . . . . . 8 ((𝑦 = 𝑥𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9491, 93bitri 275 . . . . . . 7 ((𝑥 = 𝑦𝐷 = 𝑦 / 𝑥𝐷) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷))
9559, 94mpbi 230 . . . . . 6 (𝑦 = 𝑥𝑦 / 𝑥𝐷 = 𝐷)
9695, 40oveq12d 7405 . . . . 5 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴) = (𝐷 · 𝐴))
9790, 96oveq12d 7405 . . . 4 (𝑦 = 𝑥 → ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴)) = ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9883, 84, 97cbvmpt 5209 . . 3 (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))
9998a1i 11 . 2 (𝜑 → (𝑦𝑋 ↦ ((𝑦 / 𝑥𝐵 · 𝑦 / 𝑥𝐶) + (𝑦 / 𝑥𝐷 · 𝑦 / 𝑥𝐴))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
10011, 79, 993eqtrd 2768 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  csb 3862  {cpr 4591  cmpt 5188  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071   · cmul 11073   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvmptfprodlem  45942
  Copyright terms: Public domain W3C validator