MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitf Structured version   Visualization version   GIF version

Theorem fsumsplitf 14759
Description: Split a sum into two parts. A version of fsumsplit 14758 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph 𝑘𝜑
fsumsplitf.ab (𝜑 → (𝐴𝐵) = ∅)
fsumsplitf.u (𝜑𝑈 = (𝐴𝐵))
fsumsplitf.fi (𝜑𝑈 ∈ Fin)
fsumsplitf.c ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplitf (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑈,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsplitf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3700 . . . 4 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
2 nfcv 2907 . . . 4 𝑗𝑈
3 nfcv 2907 . . . 4 𝑘𝑈
4 nfcv 2907 . . . 4 𝑗𝐶
5 nfcsb1v 3707 . . . 4 𝑘𝑗 / 𝑘𝐶
61, 2, 3, 4, 5cbvsum 14712 . . 3 Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶
76a1i 11 . 2 (𝜑 → Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶)
8 fsumsplitf.ab . . 3 (𝜑 → (𝐴𝐵) = ∅)
9 fsumsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
10 fsumsplitf.fi . . 3 (𝜑𝑈 ∈ Fin)
11 fsumsplitf.ph . . . . . 6 𝑘𝜑
12 nfv 2009 . . . . . 6 𝑘 𝑗𝑈
1311, 12nfan 1998 . . . . 5 𝑘(𝜑𝑗𝑈)
145nfel1 2922 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
1513, 14nfim 1995 . . . 4 𝑘((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
16 eleq1w 2827 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
1716anbi2d 622 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑈) ↔ (𝜑𝑗𝑈)))
181eleq1d 2829 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
1917, 18imbi12d 335 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
20 fsumsplitf.c . . . 4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
2115, 19, 20chvar 2368 . . 3 ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
228, 9, 10, 21fsumsplit 14758 . 2 (𝜑 → Σ𝑗𝑈 𝑗 / 𝑘𝐶 = (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶))
23 csbeq1a 3700 . . . . . . 7 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝑘 / 𝑗𝑗 / 𝑘𝐶)
24 csbco 3701 . . . . . . . . 9 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝑘 / 𝑘𝐶
25 csbid 3699 . . . . . . . . 9 𝑘 / 𝑘𝐶 = 𝐶
2624, 25eqtri 2787 . . . . . . . 8 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶
2726a1i 11 . . . . . . 7 (𝑗 = 𝑘𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶)
2823, 27eqtrd 2799 . . . . . 6 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
29 nfcv 2907 . . . . . 6 𝑘𝐴
30 nfcv 2907 . . . . . 6 𝑗𝐴
3128, 29, 30, 5, 4cbvsum 14712 . . . . 5 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
32 eqid 2765 . . . . 5 Σ𝑘𝐴 𝐶 = Σ𝑘𝐴 𝐶
3331, 32eqtri 2787 . . . 4 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
345, 4, 28cbvsumi 14714 . . . 4 Σ𝑗𝐵 𝑗 / 𝑘𝐶 = Σ𝑘𝐵 𝐶
3533, 34oveq12i 6854 . . 3 𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶)
3635a1i 11 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
377, 22, 363eqtrd 2803 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wnf 1878  wcel 2155  csb 3691  cun 3730  cin 3731  c0 4079  (class class class)co 6842  Fincfn 8160  cc 10187   + caddc 10192  Σcsu 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704
This theorem is referenced by:  fsumsplitsn  14761
  Copyright terms: Public domain W3C validator