| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumsplitf | Structured version Visualization version GIF version | ||
| Description: Split a sum into two parts. A version of fsumsplit 15777 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsumsplitf.ph | ⊢ Ⅎ𝑘𝜑 |
| fsumsplitf.ab | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| fsumsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| fsumsplitf.fi | ⊢ (𝜑 → 𝑈 ∈ Fin) |
| fsumsplitf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsumsplitf | ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3913 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
| 2 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑗𝐶 | |
| 3 | nfcsb1v 3923 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
| 4 | 1, 2, 3 | cbvsum 15731 | . . 3 ⊢ Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶) |
| 6 | fsumsplitf.ab | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 7 | fsumsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
| 8 | fsumsplitf.fi | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 9 | fsumsplitf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 10 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑈 | |
| 11 | 9, 10 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑈) |
| 12 | 3 | nfel1 2922 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
| 13 | 11, 12 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
| 14 | eleq1w 2824 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) | |
| 15 | 14 | anbi2d 630 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑈) ↔ (𝜑 ∧ 𝑗 ∈ 𝑈))) |
| 16 | 1 | eleq1d 2826 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
| 17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
| 18 | fsumsplitf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
| 19 | 13, 17, 18 | chvarfv 2240 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
| 20 | 6, 7, 8, 19 | fsumsplit 15777 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶)) |
| 21 | csbeq1a 3913 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶) | |
| 22 | csbcow 3914 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑘⦌𝐶 | |
| 23 | csbid 3912 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑘⦌𝐶 = 𝐶 | |
| 24 | 22, 23 | eqtri 2765 | . . . . . 6 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = 𝐶 |
| 25 | 21, 24 | eqtrdi 2793 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
| 26 | 25, 3, 2 | cbvsum 15731 | . . . 4 ⊢ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐴 𝐶 |
| 27 | 25, 3, 2 | cbvsum 15731 | . . . 4 ⊢ Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| 28 | 26, 27 | oveq12i 7443 | . . 3 ⊢ (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) |
| 29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| 30 | 5, 20, 29 | 3eqtrd 2781 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ⦋csb 3899 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 (class class class)co 7431 Fincfn 8985 ℂcc 11153 + caddc 11158 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: fsumsplitsn 15780 |
| Copyright terms: Public domain | W3C validator |