![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumsplitf | Structured version Visualization version GIF version |
Description: Split a sum into two parts. A version of fsumsplit 15618 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumsplitf.ph | ⊢ Ⅎ𝑘𝜑 |
fsumsplitf.ab | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fsumsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fsumsplitf.fi | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fsumsplitf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsplitf | ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑗𝐶 | |
2 | nfcsb1v 3878 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
3 | csbeq1a 3867 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvsumi 15574 | . . 3 ⊢ Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶) |
6 | fsumsplitf.ab | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
7 | fsumsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
8 | fsumsplitf.fi | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
9 | fsumsplitf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑈 | |
11 | 9, 10 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑈) |
12 | 2 | nfel1 2921 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
13 | 11, 12 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
14 | eleq1w 2820 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑈) ↔ (𝜑 ∧ 𝑗 ∈ 𝑈))) |
16 | 3 | eleq1d 2822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
18 | fsumsplitf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
19 | 13, 17, 18 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
20 | 6, 7, 8, 19 | fsumsplit 15618 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶)) |
21 | csbeq1a 3867 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶) | |
22 | csbcow 3868 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑘⦌𝐶 | |
23 | csbid 3866 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑘⦌𝐶 = 𝐶 | |
24 | 22, 23 | eqtri 2764 | . . . . . 6 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = 𝐶 |
25 | 21, 24 | eqtrdi 2792 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
26 | 2, 1, 25 | cbvsumi 15574 | . . . 4 ⊢ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐴 𝐶 |
27 | 2, 1, 25 | cbvsumi 15574 | . . . 4 ⊢ Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
28 | 26, 27 | oveq12i 7365 | . . 3 ⊢ (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
30 | 5, 20, 29 | 3eqtrd 2780 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ⦋csb 3853 ∪ cun 3906 ∩ cin 3907 ∅c0 4280 (class class class)co 7353 Fincfn 8879 ℂcc 11045 + caddc 11050 Σcsu 15562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-inf2 9573 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9374 df-oi 9442 df-card 9871 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-div 11809 df-nn 12150 df-2 12212 df-3 12213 df-n0 12410 df-z 12496 df-uz 12760 df-rp 12908 df-fz 13417 df-fzo 13560 df-seq 13899 df-exp 13960 df-hash 14223 df-cj 14976 df-re 14977 df-im 14978 df-sqrt 15112 df-abs 15113 df-clim 15362 df-sum 15563 |
This theorem is referenced by: fsumsplitsn 15621 |
Copyright terms: Public domain | W3C validator |