Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumsplitf | Structured version Visualization version GIF version |
Description: Split a sum into two parts. A version of fsumsplit 15381 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumsplitf.ph | ⊢ Ⅎ𝑘𝜑 |
fsumsplitf.ab | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fsumsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fsumsplitf.fi | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fsumsplitf.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsplitf | ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑗𝐶 | |
2 | nfcsb1v 3853 | . . . 4 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 | |
3 | csbeq1a 3842 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvsumi 15337 | . . 3 ⊢ Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶) |
6 | fsumsplitf.ab | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
7 | fsumsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
8 | fsumsplitf.fi | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
9 | fsumsplitf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
10 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑈 | |
11 | 9, 10 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑈) |
12 | 2 | nfel1 2922 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ |
13 | 11, 12 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
14 | eleq1w 2821 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈)) | |
15 | 14 | anbi2d 628 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑈) ↔ (𝜑 ∧ 𝑗 ∈ 𝑈))) |
16 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ)) |
17 | 15, 16 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ))) |
18 | fsumsplitf.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
19 | 13, 17, 18 | chvarfv 2236 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → ⦋𝑗 / 𝑘⦌𝐶 ∈ ℂ) |
20 | 6, 7, 8, 19 | fsumsplit 15381 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝑈 ⦋𝑗 / 𝑘⦌𝐶 = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶)) |
21 | csbeq1a 3842 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶) | |
22 | csbcow 3843 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = ⦋𝑘 / 𝑘⦌𝐶 | |
23 | csbid 3841 | . . . . . . 7 ⊢ ⦋𝑘 / 𝑘⦌𝐶 = 𝐶 | |
24 | 22, 23 | eqtri 2766 | . . . . . 6 ⊢ ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐶 = 𝐶 |
25 | 21, 24 | eqtrdi 2795 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐶 = 𝐶) |
26 | 2, 1, 25 | cbvsumi 15337 | . . . 4 ⊢ Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐴 𝐶 |
27 | 2, 1, 25 | cbvsumi 15337 | . . . 4 ⊢ Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
28 | 26, 27 | oveq12i 7267 | . . 3 ⊢ (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐶 + Σ𝑗 ∈ 𝐵 ⦋𝑗 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
30 | 5, 20, 29 | 3eqtrd 2782 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ⦋csb 3828 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 (class class class)co 7255 Fincfn 8691 ℂcc 10800 + caddc 10805 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: fsumsplitsn 15384 |
Copyright terms: Public domain | W3C validator |