MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitf Structured version   Visualization version   GIF version

Theorem fsumsplitf 15101
Description: Split a sum into two parts. A version of fsumsplit 15100 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitf.ph 𝑘𝜑
fsumsplitf.ab (𝜑 → (𝐴𝐵) = ∅)
fsumsplitf.u (𝜑𝑈 = (𝐴𝐵))
fsumsplitf.fi (𝜑𝑈 ∈ Fin)
fsumsplitf.c ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplitf (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑈,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem fsumsplitf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2980 . . . 4 𝑗𝐶
2 nfcsb1v 3910 . . . 4 𝑘𝑗 / 𝑘𝐶
3 csbeq1a 3900 . . . 4 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
41, 2, 3cbvsumi 15057 . . 3 Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶
54a1i 11 . 2 (𝜑 → Σ𝑘𝑈 𝐶 = Σ𝑗𝑈 𝑗 / 𝑘𝐶)
6 fsumsplitf.ab . . 3 (𝜑 → (𝐴𝐵) = ∅)
7 fsumsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
8 fsumsplitf.fi . . 3 (𝜑𝑈 ∈ Fin)
9 fsumsplitf.ph . . . . . 6 𝑘𝜑
10 nfv 1914 . . . . . 6 𝑘 𝑗𝑈
119, 10nfan 1899 . . . . 5 𝑘(𝜑𝑗𝑈)
122nfel1 2997 . . . . 5 𝑘𝑗 / 𝑘𝐶 ∈ ℂ
1311, 12nfim 1896 . . . 4 𝑘((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
14 eleq1w 2898 . . . . . 6 (𝑘 = 𝑗 → (𝑘𝑈𝑗𝑈))
1514anbi2d 630 . . . . 5 (𝑘 = 𝑗 → ((𝜑𝑘𝑈) ↔ (𝜑𝑗𝑈)))
163eleq1d 2900 . . . . 5 (𝑘 = 𝑗 → (𝐶 ∈ ℂ ↔ 𝑗 / 𝑘𝐶 ∈ ℂ))
1715, 16imbi12d 347 . . . 4 (𝑘 = 𝑗 → (((𝜑𝑘𝑈) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)))
18 fsumsplitf.c . . . 4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
1913, 17, 18chvarfv 2241 . . 3 ((𝜑𝑗𝑈) → 𝑗 / 𝑘𝐶 ∈ ℂ)
206, 7, 8, 19fsumsplit 15100 . 2 (𝜑 → Σ𝑗𝑈 𝑗 / 𝑘𝐶 = (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶))
21 csbeq1a 3900 . . . . . 6 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝑘 / 𝑗𝑗 / 𝑘𝐶)
22 csbcow 3901 . . . . . . 7 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝑘 / 𝑘𝐶
23 csbid 3899 . . . . . . 7 𝑘 / 𝑘𝐶 = 𝐶
2422, 23eqtri 2847 . . . . . 6 𝑘 / 𝑗𝑗 / 𝑘𝐶 = 𝐶
2521, 24syl6eq 2875 . . . . 5 (𝑗 = 𝑘𝑗 / 𝑘𝐶 = 𝐶)
262, 1, 25cbvsumi 15057 . . . 4 Σ𝑗𝐴 𝑗 / 𝑘𝐶 = Σ𝑘𝐴 𝐶
272, 1, 25cbvsumi 15057 . . . 4 Σ𝑗𝐵 𝑗 / 𝑘𝐶 = Σ𝑘𝐵 𝐶
2826, 27oveq12i 7171 . . 3 𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶)
2928a1i 11 . 2 (𝜑 → (Σ𝑗𝐴 𝑗 / 𝑘𝐶 + Σ𝑗𝐵 𝑗 / 𝑘𝐶) = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
305, 20, 293eqtrd 2863 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wnf 1783  wcel 2113  csb 3886  cun 3937  cin 3938  c0 4294  (class class class)co 7159  Fincfn 8512  cc 10538   + caddc 10543  Σcsu 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046
This theorem is referenced by:  fsumsplitsn  15103
  Copyright terms: Public domain W3C validator