| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlcvrp | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32345 analog.) (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlcvrp.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvlcvrp.j | ⊢ ∨ = (join‘𝐾) |
| cvlcvrp.m | ⊢ ∧ = (meet‘𝐾) |
| cvlcvrp.z | ⊢ 0 = (0.‘𝐾) |
| cvlcvrp.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| cvlcvrp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| cvlcvrp | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp13 1206 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ CvLat) | |
| 2 | cvllat 39344 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 4 | simp2 1137 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 5 | cvlcvrp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | cvlcvrp.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atbase 39307 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 8 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| 9 | cvlcvrp.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 10 | 5, 9 | latmcom 18361 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 11 | 3, 4, 8, 10 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 12 | 11 | eqeq1d 2732 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 13 | cvlatl 39343 | . . . 4 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 14 | 1, 13 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 15 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 16 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 17 | cvlcvrp.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 18 | 5, 16, 9, 17, 6 | atnle 39335 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 19 | 14, 15, 4, 18 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 20 | cvlcvrp.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 21 | cvlcvrp.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 22 | 5, 16, 20, 21, 6 | cvlcvr1 39357 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| 23 | 12, 19, 22 | 3bitr2d 307 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 joincjn 18209 meetcmee 18210 0.cp0 18319 Latclat 18329 CLatccla 18396 OMLcoml 39193 ⋖ ccvr 39280 Atomscatm 39281 AtLatcal 39282 CvLatclc 39283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 |
| This theorem is referenced by: cvlatcvr1 39359 cvrp 39434 |
| Copyright terms: Public domain | W3C validator |