| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlcvrp | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32361 analog.) (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlcvrp.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvlcvrp.j | ⊢ ∨ = (join‘𝐾) |
| cvlcvrp.m | ⊢ ∧ = (meet‘𝐾) |
| cvlcvrp.z | ⊢ 0 = (0.‘𝐾) |
| cvlcvrp.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| cvlcvrp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| cvlcvrp | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp13 1206 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ CvLat) | |
| 2 | cvllat 39349 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 4 | simp2 1137 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 5 | cvlcvrp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | cvlcvrp.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atbase 39312 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 8 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| 9 | cvlcvrp.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 10 | 5, 9 | latmcom 18478 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 11 | 3, 4, 8, 10 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ∧ 𝑃) = (𝑃 ∧ 𝑋)) |
| 12 | 11 | eqeq1d 2738 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 13 | cvlatl 39348 | . . . 4 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 14 | 1, 13 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 15 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 16 | eqid 2736 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 17 | cvlcvrp.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 18 | 5, 16, 9, 17, 6 | atnle 39340 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 19 | 14, 15, 4, 18 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
| 20 | cvlcvrp.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 21 | cvlcvrp.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 22 | 5, 16, 20, 21, 6 | cvlcvr1 39362 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| 23 | 12, 19, 22 | 3bitr2d 307 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 joincjn 18328 meetcmee 18329 0.cp0 18438 Latclat 18446 CLatccla 18513 OMLcoml 39198 ⋖ ccvr 39285 Atomscatm 39286 AtLatcal 39287 CvLatclc 39288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 |
| This theorem is referenced by: cvlatcvr1 39364 cvrp 39440 |
| Copyright terms: Public domain | W3C validator |