Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvrp Structured version   Visualization version   GIF version

Theorem cvlcvrp 36512
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 30137 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvrp.b 𝐵 = (Base‘𝐾)
cvlcvrp.j = (join‘𝐾)
cvlcvrp.m = (meet‘𝐾)
cvlcvrp.z 0 = (0.‘𝐾)
cvlcvrp.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvrp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvrp (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvrp
StepHypRef Expression
1 simp13 1201 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 36498 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1133 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvrp.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvlcvrp.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 36461 . . . . 5 (𝑃𝐴𝑃𝐵)
873ad2ant3 1131 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvrp.m . . . . 5 = (meet‘𝐾)
105, 9latmcom 17664 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) = (𝑃 𝑋))
113, 4, 8, 10syl3anc 1367 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) = (𝑃 𝑋))
1211eqeq1d 2822 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0 ↔ (𝑃 𝑋) = 0 ))
13 cvlatl 36497 . . . 4 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
141, 13syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ AtLat)
15 simp3 1134 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐴)
16 eqid 2820 . . . 4 (le‘𝐾) = (le‘𝐾)
17 cvlcvrp.z . . . 4 0 = (0.‘𝐾)
185, 16, 9, 17, 6atnle 36489 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 𝑋) = 0 ))
1914, 15, 4, 18syl3anc 1367 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 𝑋) = 0 ))
20 cvlcvrp.j . . 3 = (join‘𝐾)
21 cvlcvrp.c . . 3 𝐶 = ( ⋖ ‘𝐾)
225, 16, 20, 21, 6cvlcvr1 36511 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑃)))
2312, 19, 223bitr2d 309 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5042  cfv 6331  (class class class)co 7133  Basecbs 16462  lecple 16551  joincjn 17533  meetcmee 17534  0.cp0 17626  Latclat 17634  CLatccla 17696  OMLcoml 36347  ccvr 36434  Atomscatm 36435  AtLatcal 36436  CvLatclc 36437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-lat 17635  df-clat 17697  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494
This theorem is referenced by:  cvlatcvr1  36513  cvrp  36588
  Copyright terms: Public domain W3C validator