Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvrp Structured version   Visualization version   GIF version

Theorem cvlcvrp 37363
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 30746 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvrp.b 𝐵 = (Base‘𝐾)
cvlcvrp.j = (join‘𝐾)
cvlcvrp.m = (meet‘𝐾)
cvlcvrp.z 0 = (0.‘𝐾)
cvlcvrp.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvrp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvrp (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvrp
StepHypRef Expression
1 simp13 1204 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 37349 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1136 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvrp.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvlcvrp.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 37312 . . . . 5 (𝑃𝐴𝑃𝐵)
873ad2ant3 1134 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvrp.m . . . . 5 = (meet‘𝐾)
105, 9latmcom 18192 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) = (𝑃 𝑋))
113, 4, 8, 10syl3anc 1370 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) = (𝑃 𝑋))
1211eqeq1d 2742 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0 ↔ (𝑃 𝑋) = 0 ))
13 cvlatl 37348 . . . 4 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
141, 13syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ AtLat)
15 simp3 1137 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐴)
16 eqid 2740 . . . 4 (le‘𝐾) = (le‘𝐾)
17 cvlcvrp.z . . . 4 0 = (0.‘𝐾)
185, 16, 9, 17, 6atnle 37340 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 𝑋) = 0 ))
1914, 15, 4, 18syl3anc 1370 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ (𝑃 𝑋) = 0 ))
20 cvlcvrp.j . . 3 = (join‘𝐾)
21 cvlcvrp.c . . 3 𝐶 = ( ⋖ ‘𝐾)
225, 16, 20, 21, 6cvlcvr1 37362 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑃)))
2312, 19, 223bitr2d 307 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 0𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7272  Basecbs 16923  lecple 16980  joincjn 18040  meetcmee 18041  0.cp0 18152  Latclat 18160  CLatccla 18227  OMLcoml 37198  ccvr 37285  Atomscatm 37286  AtLatcal 37287  CvLatclc 37288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-lat 18161  df-clat 18228  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345
This theorem is referenced by:  cvlatcvr1  37364  cvrp  37439
  Copyright terms: Public domain W3C validator