![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlexch4N | Structured version Visualization version GIF version |
Description: An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvlexch3.b | ⊢ 𝐵 = (Base‘𝐾) |
cvlexch3.l | ⊢ ≤ = (le‘𝐾) |
cvlexch3.j | ⊢ ∨ = (join‘𝐾) |
cvlexch3.m | ⊢ ∧ = (meet‘𝐾) |
cvlexch3.z | ⊢ 0 = (0.‘𝐾) |
cvlexch3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlexch4N | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatl 35992 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝐾 ∈ AtLat) |
3 | simpr1 1187 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
4 | simpr3 1189 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
5 | cvlexch3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvlexch3.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | cvlexch3.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
8 | cvlexch3.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
9 | cvlexch3.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 5, 6, 7, 8, 9 | atnle 35984 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
11 | 2, 3, 4, 10 | syl3anc 1364 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) |
12 | cvlexch3.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
13 | 5, 6, 12, 9 | cvlexchb1 35997 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
14 | 13 | 3expia 1114 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → (¬ 𝑃 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄)))) |
15 | 11, 14 | sylbird 261 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) → ((𝑃 ∧ 𝑋) = 0 → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄)))) |
16 | 15 | 3impia 1110 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 lecple 16401 joincjn 17383 meetcmee 17384 0.cp0 17476 Atomscatm 35930 AtLatcal 35931 CvLatclc 35932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-p0 17478 df-lat 17485 df-covers 35933 df-ats 35934 df-atl 35965 df-cvlat 35989 |
This theorem is referenced by: hlexch4N 36059 |
Copyright terms: Public domain | W3C validator |