Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch4N Structured version   Visualization version   GIF version

Theorem cvlexch4N 38935
Description: An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvlexch3.b 𝐵 = (Base‘𝐾)
cvlexch3.l = (le‘𝐾)
cvlexch3.j = (join‘𝐾)
cvlexch3.m = (meet‘𝐾)
cvlexch3.z 0 = (0.‘𝐾)
cvlexch3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch4N ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))

Proof of Theorem cvlexch4N
StepHypRef Expression
1 cvlatl 38927 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
21adantr 479 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝐾 ∈ AtLat)
3 simpr1 1191 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐴)
4 simpr3 1193 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋𝐵)
5 cvlexch3.b . . . . 5 𝐵 = (Base‘𝐾)
6 cvlexch3.l . . . . 5 = (le‘𝐾)
7 cvlexch3.m . . . . 5 = (meet‘𝐾)
8 cvlexch3.z . . . . 5 0 = (0.‘𝐾)
9 cvlexch3.a . . . . 5 𝐴 = (Atoms‘𝐾)
105, 6, 7, 8, 9atnle 38919 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
112, 3, 4, 10syl3anc 1368 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (¬ 𝑃 𝑋 ↔ (𝑃 𝑋) = 0 ))
12 cvlexch3.j . . . . 5 = (join‘𝐾)
135, 6, 12, 9cvlexchb1 38932 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
14133expia 1118 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (¬ 𝑃 𝑋 → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄))))
1511, 14sylbird 259 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑃 𝑋) = 0 → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄))))
16153impia 1114 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ (𝑃 𝑋) = 0 ) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  lecple 17243  joincjn 18306  meetcmee 18307  0.cp0 18418  Atomscatm 38865  AtLatcal 38866  CvLatclc 38867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924
This theorem is referenced by:  hlexch4N  38995
  Copyright terms: Public domain W3C validator