Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Structured version   Visualization version   GIF version

Theorem cvlsupr2 37805
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 1193 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝑄)
21necomd 2999 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝑃)
3 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑅) = (𝑄 𝑅))
4 oveq2 7365 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑃 𝑅) = (𝑃 𝑃))
5 oveq2 7365 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑄 𝑅) = (𝑄 𝑃))
64, 5eqeq12d 2752 . . . . . . . . . . 11 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑃) = (𝑄 𝑃)))
7 eqcom 2743 . . . . . . . . . . 11 ((𝑃 𝑃) = (𝑄 𝑃) ↔ (𝑄 𝑃) = (𝑃 𝑃))
86, 7bitrdi 286 . . . . . . . . . 10 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
98adantl 482 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
103, 9mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = (𝑃 𝑃))
11 simpl1 1191 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ CvLat)
12 cvllat 37788 . . . . . . . . . . 11 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1311, 12syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ Lat)
14 simpl21 1251 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝐴)
15 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
16 cvlsupr2.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
1715, 16atbase 37751 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1814, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 cvlsupr2.j . . . . . . . . . . 11 = (join‘𝐾)
2015, 19latjidm 18351 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 𝑃) = 𝑃)
2113, 18, 20syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑃) = 𝑃)
2221adantr 481 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑃) = 𝑃)
2310, 22eqtrd 2776 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = 𝑃)
2423ex 413 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃 → (𝑄 𝑃) = 𝑃))
25 simpl22 1252 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝐴)
2615, 16atbase 37751 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
28 cvlsupr2.l . . . . . . . . 9 = (le‘𝐾)
2915, 28, 19latleeqj1 18340 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
3013, 27, 18, 29syl3anc 1371 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
31 cvlatl 37787 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
3211, 31syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ AtLat)
3328, 16atcmp 37773 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑃𝐴) → (𝑄 𝑃𝑄 = 𝑃))
3432, 25, 14, 33syl3anc 1371 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃𝑄 = 𝑃))
3530, 34bitr3d 280 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑄 𝑃) = 𝑃𝑄 = 𝑃))
3624, 35sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃𝑄 = 𝑃))
3736necon3d 2964 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄𝑃𝑅𝑃))
382, 37mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑃)
39 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑅) = (𝑄 𝑅))
40 oveq2 7365 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑃 𝑅) = (𝑃 𝑄))
41 oveq2 7365 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑄 𝑅) = (𝑄 𝑄))
4240, 41eqeq12d 2752 . . . . . . . . . 10 (𝑅 = 𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4342adantl 482 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4439, 43mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = (𝑄 𝑄))
4515, 19latjidm 18351 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 𝑄) = 𝑄)
4613, 27, 45syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑄) = 𝑄)
4746adantr 481 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑄 𝑄) = 𝑄)
4844, 47eqtrd 2776 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = 𝑄)
4948ex 413 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄 → (𝑃 𝑄) = 𝑄))
5015, 28, 19latleeqj1 18340 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5113, 18, 27, 50syl3anc 1371 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5228, 16atcmp 37773 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
5332, 14, 25, 52syl3anc 1371 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄𝑃 = 𝑄))
5451, 53bitr3d 280 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑃 𝑄) = 𝑄𝑃 = 𝑄))
5549, 54sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄𝑃 = 𝑄))
5655necon3d 2964 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃𝑄𝑅𝑄))
571, 56mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑄)
58 simpl23 1253 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝐴)
5915, 16atbase 37751 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6058, 59syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
6115, 28, 19latlej1 18337 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
6213, 27, 60, 61syl3anc 1371 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑄 𝑅))
63 simpr 485 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
6462, 63breqtrrd 5133 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑃 𝑅))
6528, 19, 16cvlatexch1 37798 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6611, 25, 58, 14, 2, 65syl131anc 1383 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6764, 66mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 (𝑃 𝑄))
6838, 57, 673jca 1128 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))
69 simpr3 1196 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
70 simpl1 1191 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ CvLat)
7170, 12syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
72 simpl21 1251 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝐴)
7372, 17syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
74 simpl22 1252 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄𝐴)
7574, 26syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
7615, 19latjcom 18336 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
7771, 73, 75, 76syl3anc 1371 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑄 𝑃))
7877breq2d 5117 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
79 simpl23 1253 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝐴)
80 simpr2 1195 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑄)
8128, 19, 16cvlatexch1 37798 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
8270, 79, 72, 74, 80, 81syl131anc 1383 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
83 simpr1 1194 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑃)
8483necomd 2999 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝑅)
8528, 19, 16cvlatexchb2 37797 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8670, 72, 74, 79, 84, 85syl131anc 1383 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8782, 86sylibd 238 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → (𝑃 𝑅) = (𝑄 𝑅)))
8878, 87sylbid 239 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) → (𝑃 𝑅) = (𝑄 𝑅)))
8969, 88mpd 15 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
9068, 89impbida 799 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  Latclat 18320  Atomscatm 37725  AtLatcal 37726  CvLatclc 37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784
This theorem is referenced by:  cvlsupr3  37806  cvlsupr4  37807  cvlsupr5  37808  cvlsupr6  37809  4atexlemex2  38534  4atex  38539  4atex3  38544  cdleme02N  38685  cdleme0ex2N  38687  cdleme0moN  38688  cdleme0nex  38753
  Copyright terms: Public domain W3C validator