Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Structured version   Visualization version   GIF version

Theorem cvlsupr2 39343
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 1194 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝑄)
21necomd 2981 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝑃)
3 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑅) = (𝑄 𝑅))
4 oveq2 7398 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑃 𝑅) = (𝑃 𝑃))
5 oveq2 7398 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑄 𝑅) = (𝑄 𝑃))
64, 5eqeq12d 2746 . . . . . . . . . . 11 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑃) = (𝑄 𝑃)))
7 eqcom 2737 . . . . . . . . . . 11 ((𝑃 𝑃) = (𝑄 𝑃) ↔ (𝑄 𝑃) = (𝑃 𝑃))
86, 7bitrdi 287 . . . . . . . . . 10 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
98adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
103, 9mpbid 232 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = (𝑃 𝑃))
11 simpl1 1192 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ CvLat)
12 cvllat 39326 . . . . . . . . . . 11 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1311, 12syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ Lat)
14 simpl21 1252 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝐴)
15 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
16 cvlsupr2.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
1715, 16atbase 39289 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1814, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 cvlsupr2.j . . . . . . . . . . 11 = (join‘𝐾)
2015, 19latjidm 18428 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 𝑃) = 𝑃)
2113, 18, 20syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑃) = 𝑃)
2221adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑃) = 𝑃)
2310, 22eqtrd 2765 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = 𝑃)
2423ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃 → (𝑄 𝑃) = 𝑃))
25 simpl22 1253 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝐴)
2615, 16atbase 39289 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
28 cvlsupr2.l . . . . . . . . 9 = (le‘𝐾)
2915, 28, 19latleeqj1 18417 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
3013, 27, 18, 29syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
31 cvlatl 39325 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
3211, 31syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ AtLat)
3328, 16atcmp 39311 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑃𝐴) → (𝑄 𝑃𝑄 = 𝑃))
3432, 25, 14, 33syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃𝑄 = 𝑃))
3530, 34bitr3d 281 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑄 𝑃) = 𝑃𝑄 = 𝑃))
3624, 35sylibd 239 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃𝑄 = 𝑃))
3736necon3d 2947 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄𝑃𝑅𝑃))
382, 37mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑃)
39 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑅) = (𝑄 𝑅))
40 oveq2 7398 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑃 𝑅) = (𝑃 𝑄))
41 oveq2 7398 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑄 𝑅) = (𝑄 𝑄))
4240, 41eqeq12d 2746 . . . . . . . . . 10 (𝑅 = 𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4342adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4439, 43mpbid 232 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = (𝑄 𝑄))
4515, 19latjidm 18428 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 𝑄) = 𝑄)
4613, 27, 45syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑄) = 𝑄)
4746adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑄 𝑄) = 𝑄)
4844, 47eqtrd 2765 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = 𝑄)
4948ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄 → (𝑃 𝑄) = 𝑄))
5015, 28, 19latleeqj1 18417 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5113, 18, 27, 50syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5228, 16atcmp 39311 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
5332, 14, 25, 52syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄𝑃 = 𝑄))
5451, 53bitr3d 281 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑃 𝑄) = 𝑄𝑃 = 𝑄))
5549, 54sylibd 239 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄𝑃 = 𝑄))
5655necon3d 2947 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃𝑄𝑅𝑄))
571, 56mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑄)
58 simpl23 1254 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝐴)
5915, 16atbase 39289 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6058, 59syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
6115, 28, 19latlej1 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
6213, 27, 60, 61syl3anc 1373 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑄 𝑅))
63 simpr 484 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
6462, 63breqtrrd 5138 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑃 𝑅))
6528, 19, 16cvlatexch1 39336 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6611, 25, 58, 14, 2, 65syl131anc 1385 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6764, 66mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 (𝑃 𝑄))
6838, 57, 673jca 1128 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))
69 simpr3 1197 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
70 simpl1 1192 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ CvLat)
7170, 12syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
72 simpl21 1252 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝐴)
7372, 17syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
74 simpl22 1253 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄𝐴)
7574, 26syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
7615, 19latjcom 18413 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
7771, 73, 75, 76syl3anc 1373 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑄 𝑃))
7877breq2d 5122 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
79 simpl23 1254 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝐴)
80 simpr2 1196 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑄)
8128, 19, 16cvlatexch1 39336 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
8270, 79, 72, 74, 80, 81syl131anc 1385 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
83 simpr1 1195 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑃)
8483necomd 2981 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝑅)
8528, 19, 16cvlatexchb2 39335 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8670, 72, 74, 79, 84, 85syl131anc 1385 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8782, 86sylibd 239 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → (𝑃 𝑅) = (𝑄 𝑅)))
8878, 87sylbid 240 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) → (𝑃 𝑅) = (𝑄 𝑅)))
8969, 88mpd 15 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
9068, 89impbida 800 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Latclat 18397  Atomscatm 39263  AtLatcal 39264  CvLatclc 39265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322
This theorem is referenced by:  cvlsupr3  39344  cvlsupr4  39345  cvlsupr5  39346  cvlsupr6  39347  4atexlemex2  40072  4atex  40077  4atex3  40082  cdleme02N  40223  cdleme0ex2N  40225  cdleme0moN  40226  cdleme0nex  40291
  Copyright terms: Public domain W3C validator