Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Structured version   Visualization version   GIF version

Theorem cvlsupr2 38726
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atomsβ€˜πΎ)
cvlsupr2.l ≀ = (leβ€˜πΎ)
cvlsupr2.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
cvlsupr2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 1190 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑃 β‰  𝑄)
21necomd 2990 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑄 β‰  𝑃)
3 simplr 766 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
4 oveq2 7413 . . . . . . . . . . . 12 (𝑅 = 𝑃 β†’ (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑃))
5 oveq2 7413 . . . . . . . . . . . 12 (𝑅 = 𝑃 β†’ (𝑄 ∨ 𝑅) = (𝑄 ∨ 𝑃))
64, 5eqeq12d 2742 . . . . . . . . . . 11 (𝑅 = 𝑃 β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑃) = (𝑄 ∨ 𝑃)))
7 eqcom 2733 . . . . . . . . . . 11 ((𝑃 ∨ 𝑃) = (𝑄 ∨ 𝑃) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃))
86, 7bitrdi 287 . . . . . . . . . 10 (𝑅 = 𝑃 β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃)))
98adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃)))
103, 9mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) β†’ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃))
11 simpl1 1188 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ CvLat)
12 cvllat 38709 . . . . . . . . . . 11 (𝐾 ∈ CvLat β†’ 𝐾 ∈ Lat)
1311, 12syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ Lat)
14 simpl21 1248 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ 𝐴)
15 eqid 2726 . . . . . . . . . . . 12 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
16 cvlsupr2.a . . . . . . . . . . . 12 𝐴 = (Atomsβ€˜πΎ)
1715, 16atbase 38672 . . . . . . . . . . 11 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1814, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
19 cvlsupr2.j . . . . . . . . . . 11 ∨ = (joinβ€˜πΎ)
2015, 19latjidm 18427 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑃) = 𝑃)
2113, 18, 20syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑃 ∨ 𝑃) = 𝑃)
2221adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) β†’ (𝑃 ∨ 𝑃) = 𝑃)
2310, 22eqtrd 2766 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) β†’ (𝑄 ∨ 𝑃) = 𝑃)
2423ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 = 𝑃 β†’ (𝑄 ∨ 𝑃) = 𝑃))
25 simpl22 1249 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ 𝐴)
2615, 16atbase 38672 . . . . . . . . 9 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2725, 26syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
28 cvlsupr2.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
2915, 28, 19latleeqj1 18416 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ≀ 𝑃 ↔ (𝑄 ∨ 𝑃) = 𝑃))
3013, 27, 18, 29syl3anc 1368 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑄 ≀ 𝑃 ↔ (𝑄 ∨ 𝑃) = 𝑃))
31 cvlatl 38708 . . . . . . . . 9 (𝐾 ∈ CvLat β†’ 𝐾 ∈ AtLat)
3211, 31syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ AtLat)
3328, 16atcmp 38694 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (𝑄 ≀ 𝑃 ↔ 𝑄 = 𝑃))
3432, 25, 14, 33syl3anc 1368 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑄 ≀ 𝑃 ↔ 𝑄 = 𝑃))
3530, 34bitr3d 281 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ ((𝑄 ∨ 𝑃) = 𝑃 ↔ 𝑄 = 𝑃))
3624, 35sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 = 𝑃 β†’ 𝑄 = 𝑃))
3736necon3d 2955 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑄 β‰  𝑃 β†’ 𝑅 β‰  𝑃))
382, 37mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 β‰  𝑃)
39 simplr 766 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
40 oveq2 7413 . . . . . . . . . . 11 (𝑅 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑄))
41 oveq2 7413 . . . . . . . . . . 11 (𝑅 = 𝑄 β†’ (𝑄 ∨ 𝑅) = (𝑄 ∨ 𝑄))
4240, 41eqeq12d 2742 . . . . . . . . . 10 (𝑅 = 𝑄 β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)))
4342adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)))
4439, 43mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄))
4515, 19latjidm 18427 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
4613, 27, 45syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
4746adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) β†’ (𝑄 ∨ 𝑄) = 𝑄)
4844, 47eqtrd 2766 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) β†’ (𝑃 ∨ 𝑄) = 𝑄)
4948ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 = 𝑄 β†’ (𝑃 ∨ 𝑄) = 𝑄))
5015, 28, 19latleeqj1 18416 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ≀ 𝑄 ↔ (𝑃 ∨ 𝑄) = 𝑄))
5113, 18, 27, 50syl3anc 1368 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑃 ≀ 𝑄 ↔ (𝑃 ∨ 𝑄) = 𝑄))
5228, 16atcmp 38694 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ≀ 𝑄 ↔ 𝑃 = 𝑄))
5332, 14, 25, 52syl3anc 1368 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑃 ≀ 𝑄 ↔ 𝑃 = 𝑄))
5451, 53bitr3d 281 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ ((𝑃 ∨ 𝑄) = 𝑄 ↔ 𝑃 = 𝑄))
5549, 54sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 = 𝑄 β†’ 𝑃 = 𝑄))
5655necon3d 2955 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑃 β‰  𝑄 β†’ 𝑅 β‰  𝑄))
571, 56mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 β‰  𝑄)
58 simpl23 1250 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ 𝐴)
5915, 16atbase 38672 . . . . . . 7 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
6058, 59syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
6115, 28, 19latlej1 18413 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ 𝑄 ≀ (𝑄 ∨ 𝑅))
6213, 27, 60, 61syl3anc 1368 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑄 ≀ (𝑄 ∨ 𝑅))
63 simpr 484 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
6462, 63breqtrrd 5169 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑄 ≀ (𝑃 ∨ 𝑅))
6528, 19, 16cvlatexch1 38719 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 β‰  𝑃) β†’ (𝑄 ≀ (𝑃 ∨ 𝑅) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
6611, 25, 58, 14, 2, 65syl131anc 1380 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑄 ≀ (𝑃 ∨ 𝑅) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
6764, 66mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
6838, 57, 673jca 1125 . 2 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))
69 simpr3 1193 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
70 simpl1 1188 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ CvLat)
7170, 12syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
72 simpl21 1248 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
7372, 17syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
74 simpl22 1249 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
7574, 26syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
7615, 19latjcom 18412 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
7771, 73, 75, 76syl3anc 1368 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
7877breq2d 5153 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) ↔ 𝑅 ≀ (𝑄 ∨ 𝑃)))
79 simpl23 1250 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
80 simpr2 1192 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 β‰  𝑄)
8128, 19, 16cvlatexch1 38719 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑅 β‰  𝑄) β†’ (𝑅 ≀ (𝑄 ∨ 𝑃) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅)))
8270, 79, 72, 74, 80, 81syl131anc 1380 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ (𝑄 ∨ 𝑃) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅)))
83 simpr1 1191 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 β‰  𝑃)
8483necomd 2990 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑅)
8528, 19, 16cvlatexchb2 38718 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
8670, 72, 74, 79, 84, 85syl131anc 1380 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
8782, 86sylibd 238 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ (𝑄 ∨ 𝑃) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
8878, 87sylbid 239 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
8969, 88mpd 15 . 2 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
9068, 89impbida 798 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  Latclat 18396  Atomscatm 38646  AtLatcal 38647  CvLatclc 38648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705
This theorem is referenced by:  cvlsupr3  38727  cvlsupr4  38728  cvlsupr5  38729  cvlsupr6  38730  4atexlemex2  39455  4atex  39460  4atex3  39465  cdleme02N  39606  cdleme0ex2N  39608  cdleme0moN  39609  cdleme0nex  39674
  Copyright terms: Public domain W3C validator