Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Structured version   Visualization version   GIF version

Theorem cvlsupr2 37094
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 1195 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝑄)
21necomd 2996 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝑃)
3 simplr 769 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑅) = (𝑄 𝑅))
4 oveq2 7221 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑃 𝑅) = (𝑃 𝑃))
5 oveq2 7221 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑄 𝑅) = (𝑄 𝑃))
64, 5eqeq12d 2753 . . . . . . . . . . 11 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑃) = (𝑄 𝑃)))
7 eqcom 2744 . . . . . . . . . . 11 ((𝑃 𝑃) = (𝑄 𝑃) ↔ (𝑄 𝑃) = (𝑃 𝑃))
86, 7bitrdi 290 . . . . . . . . . 10 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
98adantl 485 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
103, 9mpbid 235 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = (𝑃 𝑃))
11 simpl1 1193 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ CvLat)
12 cvllat 37077 . . . . . . . . . . 11 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1311, 12syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ Lat)
14 simpl21 1253 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝐴)
15 eqid 2737 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
16 cvlsupr2.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
1715, 16atbase 37040 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1814, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 cvlsupr2.j . . . . . . . . . . 11 = (join‘𝐾)
2015, 19latjidm 17968 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 𝑃) = 𝑃)
2113, 18, 20syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑃) = 𝑃)
2221adantr 484 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑃) = 𝑃)
2310, 22eqtrd 2777 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = 𝑃)
2423ex 416 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃 → (𝑄 𝑃) = 𝑃))
25 simpl22 1254 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝐴)
2615, 16atbase 37040 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
28 cvlsupr2.l . . . . . . . . 9 = (le‘𝐾)
2915, 28, 19latleeqj1 17957 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
3013, 27, 18, 29syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
31 cvlatl 37076 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
3211, 31syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ AtLat)
3328, 16atcmp 37062 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑃𝐴) → (𝑄 𝑃𝑄 = 𝑃))
3432, 25, 14, 33syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃𝑄 = 𝑃))
3530, 34bitr3d 284 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑄 𝑃) = 𝑃𝑄 = 𝑃))
3624, 35sylibd 242 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃𝑄 = 𝑃))
3736necon3d 2961 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄𝑃𝑅𝑃))
382, 37mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑃)
39 simplr 769 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑅) = (𝑄 𝑅))
40 oveq2 7221 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑃 𝑅) = (𝑃 𝑄))
41 oveq2 7221 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑄 𝑅) = (𝑄 𝑄))
4240, 41eqeq12d 2753 . . . . . . . . . 10 (𝑅 = 𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4342adantl 485 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4439, 43mpbid 235 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = (𝑄 𝑄))
4515, 19latjidm 17968 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 𝑄) = 𝑄)
4613, 27, 45syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑄) = 𝑄)
4746adantr 484 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑄 𝑄) = 𝑄)
4844, 47eqtrd 2777 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = 𝑄)
4948ex 416 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄 → (𝑃 𝑄) = 𝑄))
5015, 28, 19latleeqj1 17957 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5113, 18, 27, 50syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5228, 16atcmp 37062 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
5332, 14, 25, 52syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄𝑃 = 𝑄))
5451, 53bitr3d 284 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑃 𝑄) = 𝑄𝑃 = 𝑄))
5549, 54sylibd 242 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄𝑃 = 𝑄))
5655necon3d 2961 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃𝑄𝑅𝑄))
571, 56mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑄)
58 simpl23 1255 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝐴)
5915, 16atbase 37040 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6058, 59syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
6115, 28, 19latlej1 17954 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
6213, 27, 60, 61syl3anc 1373 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑄 𝑅))
63 simpr 488 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
6462, 63breqtrrd 5081 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑃 𝑅))
6528, 19, 16cvlatexch1 37087 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6611, 25, 58, 14, 2, 65syl131anc 1385 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6764, 66mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 (𝑃 𝑄))
6838, 57, 673jca 1130 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))
69 simpr3 1198 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
70 simpl1 1193 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ CvLat)
7170, 12syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
72 simpl21 1253 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝐴)
7372, 17syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
74 simpl22 1254 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄𝐴)
7574, 26syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
7615, 19latjcom 17953 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
7771, 73, 75, 76syl3anc 1373 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑄 𝑃))
7877breq2d 5065 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
79 simpl23 1255 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝐴)
80 simpr2 1197 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑄)
8128, 19, 16cvlatexch1 37087 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
8270, 79, 72, 74, 80, 81syl131anc 1385 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
83 simpr1 1196 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑃)
8483necomd 2996 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝑅)
8528, 19, 16cvlatexchb2 37086 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8670, 72, 74, 79, 84, 85syl131anc 1385 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8782, 86sylibd 242 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → (𝑃 𝑅) = (𝑄 𝑅)))
8878, 87sylbid 243 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) → (𝑃 𝑅) = (𝑄 𝑅)))
8969, 88mpd 15 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
9068, 89impbida 801 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  Latclat 17937  Atomscatm 37014  AtLatcal 37015  CvLatclc 37016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073
This theorem is referenced by:  cvlsupr3  37095  cvlsupr4  37096  cvlsupr5  37097  cvlsupr6  37098  4atexlemex2  37822  4atex  37827  4atex3  37832  cdleme02N  37973  cdleme0ex2N  37975  cdleme0moN  37976  cdleme0nex  38041
  Copyright terms: Public domain W3C validator