Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Structured version   Visualization version   GIF version

Theorem cvlsupr2 37284
Description: Two equivalent ways of expressing that 𝑅 is a superposition of 𝑃 and 𝑄. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a 𝐴 = (Atoms‘𝐾)
cvlsupr2.l = (le‘𝐾)
cvlsupr2.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 1191 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝑄)
21necomd 2998 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝑃)
3 simplr 765 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑅) = (𝑄 𝑅))
4 oveq2 7263 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑃 𝑅) = (𝑃 𝑃))
5 oveq2 7263 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (𝑄 𝑅) = (𝑄 𝑃))
64, 5eqeq12d 2754 . . . . . . . . . . 11 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑃) = (𝑄 𝑃)))
7 eqcom 2745 . . . . . . . . . . 11 ((𝑃 𝑃) = (𝑄 𝑃) ↔ (𝑄 𝑃) = (𝑃 𝑃))
86, 7bitrdi 286 . . . . . . . . . 10 (𝑅 = 𝑃 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
98adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑃 𝑃)))
103, 9mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = (𝑃 𝑃))
11 simpl1 1189 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ CvLat)
12 cvllat 37267 . . . . . . . . . . 11 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1311, 12syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ Lat)
14 simpl21 1249 . . . . . . . . . . 11 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃𝐴)
15 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
16 cvlsupr2.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
1715, 16atbase 37230 . . . . . . . . . . 11 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1814, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 cvlsupr2.j . . . . . . . . . . 11 = (join‘𝐾)
2015, 19latjidm 18095 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 𝑃) = 𝑃)
2113, 18, 20syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑃) = 𝑃)
2221adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 𝑃) = 𝑃)
2310, 22eqtrd 2778 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 𝑃) = 𝑃)
2423ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃 → (𝑄 𝑃) = 𝑃))
25 simpl22 1250 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄𝐴)
2615, 16atbase 37230 . . . . . . . . 9 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
28 cvlsupr2.l . . . . . . . . 9 = (le‘𝐾)
2915, 28, 19latleeqj1 18084 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
3013, 27, 18, 29syl3anc 1369 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃 ↔ (𝑄 𝑃) = 𝑃))
31 cvlatl 37266 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
3211, 31syl 17 . . . . . . . 8 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝐾 ∈ AtLat)
3328, 16atcmp 37252 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑃𝐴) → (𝑄 𝑃𝑄 = 𝑃))
3432, 25, 14, 33syl3anc 1369 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑃𝑄 = 𝑃))
3530, 34bitr3d 280 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑄 𝑃) = 𝑃𝑄 = 𝑃))
3624, 35sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑃𝑄 = 𝑃))
3736necon3d 2963 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄𝑃𝑅𝑃))
382, 37mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑃)
39 simplr 765 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑅) = (𝑄 𝑅))
40 oveq2 7263 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑃 𝑅) = (𝑃 𝑄))
41 oveq2 7263 . . . . . . . . . . 11 (𝑅 = 𝑄 → (𝑄 𝑅) = (𝑄 𝑄))
4240, 41eqeq12d 2754 . . . . . . . . . 10 (𝑅 = 𝑄 → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4342adantl 481 . . . . . . . . 9 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑃 𝑄) = (𝑄 𝑄)))
4439, 43mpbid 231 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = (𝑄 𝑄))
4515, 19latjidm 18095 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 𝑄) = 𝑄)
4613, 27, 45syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 𝑄) = 𝑄)
4746adantr 480 . . . . . . . 8 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑄 𝑄) = 𝑄)
4844, 47eqtrd 2778 . . . . . . 7 ((((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 𝑄) = 𝑄)
4948ex 412 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄 → (𝑃 𝑄) = 𝑄))
5015, 28, 19latleeqj1 18084 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5113, 18, 27, 50syl3anc 1369 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄 ↔ (𝑃 𝑄) = 𝑄))
5228, 16atcmp 37252 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
5332, 14, 25, 52syl3anc 1369 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑄𝑃 = 𝑄))
5451, 53bitr3d 280 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → ((𝑃 𝑄) = 𝑄𝑃 = 𝑄))
5549, 54sylibd 238 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅 = 𝑄𝑃 = 𝑄))
5655necon3d 2963 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃𝑄𝑅𝑄))
571, 56mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝑄)
58 simpl23 1251 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅𝐴)
5915, 16atbase 37230 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6058, 59syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
6115, 28, 19latlej1 18081 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
6213, 27, 60, 61syl3anc 1369 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑄 𝑅))
63 simpr 484 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
6462, 63breqtrrd 5098 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑄 (𝑃 𝑅))
6528, 19, 16cvlatexch1 37277 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6611, 25, 58, 14, 2, 65syl131anc 1381 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑄 (𝑃 𝑅) → 𝑅 (𝑃 𝑄)))
6764, 66mpd 15 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → 𝑅 (𝑃 𝑄))
6838, 57, 673jca 1126 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))
69 simpr3 1194 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
70 simpl1 1189 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ CvLat)
7170, 12syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
72 simpl21 1249 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝐴)
7372, 17syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
74 simpl22 1250 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄𝐴)
7574, 26syl 17 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
7615, 19latjcom 18080 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
7771, 73, 75, 76syl3anc 1369 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑄 𝑃))
7877breq2d 5082 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ 𝑅 (𝑄 𝑃)))
79 simpl23 1251 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝐴)
80 simpr2 1193 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑄)
8128, 19, 16cvlatexch1 37277 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
8270, 79, 72, 74, 80, 81syl131anc 1381 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → 𝑃 (𝑄 𝑅)))
83 simpr1 1192 . . . . . . 7 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑅𝑃)
8483necomd 2998 . . . . . 6 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → 𝑃𝑅)
8528, 19, 16cvlatexchb2 37276 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8670, 72, 74, 79, 84, 85syl131anc 1381 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
8782, 86sylibd 238 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑄 𝑃) → (𝑃 𝑅) = (𝑄 𝑅)))
8878, 87sylbid 239 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) → (𝑃 𝑅) = (𝑄 𝑅)))
8969, 88mpd 15 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
9068, 89impbida 797 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  AtLatcal 37205  CvLatclc 37206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263
This theorem is referenced by:  cvlsupr3  37285  cvlsupr4  37286  cvlsupr5  37287  cvlsupr6  37288  4atexlemex2  38012  4atex  38017  4atex3  38022  cdleme02N  38163  cdleme0ex2N  38165  cdleme0moN  38166  cdleme0nex  38231
  Copyright terms: Public domain W3C validator