Proof of Theorem cvlsupr2
Step | Hyp | Ref
| Expression |
1 | | simpl3 1192 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑄) |
2 | 1 | necomd 3001 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑃) |
3 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
4 | | oveq2 7279 |
. . . . . . . . . . . 12
⊢ (𝑅 = 𝑃 → (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑃)) |
5 | | oveq2 7279 |
. . . . . . . . . . . 12
⊢ (𝑅 = 𝑃 → (𝑄 ∨ 𝑅) = (𝑄 ∨ 𝑃)) |
6 | 4, 5 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑃) = (𝑄 ∨ 𝑃))) |
7 | | eqcom 2747 |
. . . . . . . . . . 11
⊢ ((𝑃 ∨ 𝑃) = (𝑄 ∨ 𝑃) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃)) |
8 | 6, 7 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃))) |
9 | 8 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃))) |
10 | 3, 9 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 ∨ 𝑃) = (𝑃 ∨ 𝑃)) |
11 | | simpl1 1190 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝐾 ∈ CvLat) |
12 | | cvllat 37336 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝐾 ∈ Lat) |
14 | | simpl21 1250 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) |
15 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
16 | | cvlsupr2.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) |
17 | 15, 16 | atbase 37299 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
18 | 14, 17 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑃 ∈ (Base‘𝐾)) |
19 | | cvlsupr2.j |
. . . . . . . . . . 11
⊢ ∨ =
(join‘𝐾) |
20 | 15, 19 | latjidm 18178 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑃) = 𝑃) |
21 | 13, 18, 20 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑃) = 𝑃) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) → (𝑃 ∨ 𝑃) = 𝑃) |
23 | 10, 22 | eqtrd 2780 |
. . . . . . 7
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑃) → (𝑄 ∨ 𝑃) = 𝑃) |
24 | 23 | ex 413 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 = 𝑃 → (𝑄 ∨ 𝑃) = 𝑃)) |
25 | | simpl22 1251 |
. . . . . . . . 9
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
26 | 15, 16 | atbase 37299 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
28 | | cvlsupr2.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
29 | 15, 28, 19 | latleeqj1 18167 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑄 ≤ 𝑃 ↔ (𝑄 ∨ 𝑃) = 𝑃)) |
30 | 13, 27, 18, 29 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑄 ≤ 𝑃 ↔ (𝑄 ∨ 𝑃) = 𝑃)) |
31 | | cvlatl 37335 |
. . . . . . . . 9
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) |
32 | 11, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝐾 ∈ AtLat) |
33 | 28, 16 | atcmp 37321 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃)) |
34 | 32, 25, 14, 33 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃)) |
35 | 30, 34 | bitr3d 280 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑃) = 𝑃 ↔ 𝑄 = 𝑃)) |
36 | 24, 35 | sylibd 238 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 = 𝑃 → 𝑄 = 𝑃)) |
37 | 36 | necon3d 2966 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑄 ≠ 𝑃 → 𝑅 ≠ 𝑃)) |
38 | 2, 37 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ≠ 𝑃) |
39 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
40 | | oveq2 7279 |
. . . . . . . . . . 11
⊢ (𝑅 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑄)) |
41 | | oveq2 7279 |
. . . . . . . . . . 11
⊢ (𝑅 = 𝑄 → (𝑄 ∨ 𝑅) = (𝑄 ∨ 𝑄)) |
42 | 40, 41 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ (𝑅 = 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄))) |
43 | 42 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄))) |
44 | 39, 43 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
45 | 15, 19 | latjidm 18178 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 ∨ 𝑄) = 𝑄) |
46 | 13, 27, 45 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑄) = 𝑄) |
47 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) → (𝑄 ∨ 𝑄) = 𝑄) |
48 | 44, 47 | eqtrd 2780 |
. . . . . . 7
⊢ ((((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ 𝑅 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
49 | 48 | ex 413 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 = 𝑄 → (𝑃 ∨ 𝑄) = 𝑄)) |
50 | 15, 28, 19 | latleeqj1 18167 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ≤ 𝑄 ↔ (𝑃 ∨ 𝑄) = 𝑄)) |
51 | 13, 18, 27, 50 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑃 ≤ 𝑄 ↔ (𝑃 ∨ 𝑄) = 𝑄)) |
52 | 28, 16 | atcmp 37321 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
53 | 32, 14, 25, 52 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
54 | 51, 53 | bitr3d 280 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → ((𝑃 ∨ 𝑄) = 𝑄 ↔ 𝑃 = 𝑄)) |
55 | 49, 54 | sylibd 238 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 = 𝑄 → 𝑃 = 𝑄)) |
56 | 55 | necon3d 2966 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑃 ≠ 𝑄 → 𝑅 ≠ 𝑄)) |
57 | 1, 56 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ≠ 𝑄) |
58 | | simpl23 1252 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
59 | 15, 16 | atbase 37299 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
60 | 58, 59 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
61 | 15, 28, 19 | latlej1 18164 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 ≤ (𝑄 ∨ 𝑅)) |
62 | 13, 27, 60, 61 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑄 ≤ (𝑄 ∨ 𝑅)) |
63 | | simpr 485 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
64 | 62, 63 | breqtrrd 5107 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑄 ≤ (𝑃 ∨ 𝑅)) |
65 | 28, 19, 16 | cvlatexch1 37346 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
66 | 11, 25, 58, 14, 2, 65 | syl131anc 1382 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
67 | 64, 66 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
68 | 38, 57, 67 | 3jca 1127 |
. 2
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) |
69 | | simpr3 1195 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
70 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ CvLat) |
71 | 70, 12 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
72 | | simpl21 1250 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
73 | 72, 17 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ (Base‘𝐾)) |
74 | | simpl22 1251 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
75 | 74, 26 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ (Base‘𝐾)) |
76 | 15, 19 | latjcom 18163 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
77 | 71, 73, 75, 76 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
78 | 77 | breq2d 5091 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ (𝑃 ∨ 𝑄) ↔ 𝑅 ≤ (𝑄 ∨ 𝑃))) |
79 | | simpl23 1252 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
80 | | simpr2 1194 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≠ 𝑄) |
81 | 28, 19, 16 | cvlatexch1 37346 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑅 ≠ 𝑄) → (𝑅 ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ 𝑅))) |
82 | 70, 79, 72, 74, 80, 81 | syl131anc 1382 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ 𝑅))) |
83 | | simpr1 1193 |
. . . . . . 7
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≠ 𝑃) |
84 | 83 | necomd 3001 |
. . . . . 6
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑅) |
85 | 28, 19, 16 | cvlatexchb2 37345 |
. . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
86 | 70, 72, 74, 79, 84, 85 | syl131anc 1382 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
87 | 82, 86 | sylibd 238 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ (𝑄 ∨ 𝑃) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
88 | 78, 87 | sylbid 239 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ (𝑃 ∨ 𝑄) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
89 | 69, 88 | mpd 15 |
. 2
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
90 | 68, 89 | impbida 798 |
1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |