Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatcvr1 | Structured version Visualization version GIF version |
Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatcvr1.j | ⊢ ∨ = (join‘𝐾) |
cvlatcvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvlatcvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlatcvr1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1204 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ CvLat) | |
2 | cvlatl 37335 | . . . 4 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ AtLat) |
4 | eqid 2740 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2740 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
6 | cvlatcvr1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 4, 5, 6 | atnem0 37328 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
8 | 3, 7 | syld3an1 1409 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
9 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 6 | atbase 37299 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
11 | cvlatcvr1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | cvlatcvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 9, 11, 4, 5, 12, 6 | cvlcvrp 37350 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
14 | 10, 13 | syl3an2 1163 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
15 | 8, 14 | bitrd 278 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 joincjn 18027 meetcmee 18028 0.cp0 18139 CLatccla 18214 OMLcoml 37185 ⋖ ccvr 37272 Atomscatm 37273 AtLatcal 37274 CvLatclc 37275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-proset 18011 df-poset 18029 df-plt 18046 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-p0 18141 df-lat 18148 df-clat 18215 df-oposet 37186 df-ol 37188 df-oml 37189 df-covers 37276 df-ats 37277 df-atl 37308 df-cvlat 37332 |
This theorem is referenced by: cvlatcvr2 37352 atcvr1 37427 |
Copyright terms: Public domain | W3C validator |