| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatcvr1 | Structured version Visualization version GIF version | ||
| Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlatcvr1.j | ⊢ ∨ = (join‘𝐾) |
| cvlatcvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| cvlatcvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| cvlatcvr1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp13 1206 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39304 | . . . 4 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 4 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2729 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 6 | cvlatcvr1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 4, 5, 6 | atnem0 39297 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
| 8 | 3, 7 | syld3an1 1412 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | 9, 6 | atbase 39268 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 11 | cvlatcvr1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | cvlatcvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 13 | 9, 11, 4, 5, 12, 6 | cvlcvrp 39319 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
| 14 | 10, 13 | syl3an2 1164 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
| 15 | 8, 14 | bitrd 279 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 joincjn 18217 meetcmee 18218 0.cp0 18327 CLatccla 18404 OMLcoml 39154 ⋖ ccvr 39241 Atomscatm 39242 AtLatcal 39243 CvLatclc 39244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 |
| This theorem is referenced by: cvlatcvr2 39321 atcvr1 39396 |
| Copyright terms: Public domain | W3C validator |