![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatcvr1 | Structured version Visualization version GIF version |
Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatcvr1.j | ⊢ ∨ = (join‘𝐾) |
cvlatcvr1.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvlatcvr1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlatcvr1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1202 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ CvLat) | |
2 | cvlatl 38971 | . . . 4 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ AtLat) |
4 | eqid 2725 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2725 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
6 | cvlatcvr1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 4, 5, 6 | atnem0 38964 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
8 | 3, 7 | syld3an1 1407 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃(meet‘𝐾)𝑄) = (0.‘𝐾))) |
9 | eqid 2725 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 6 | atbase 38935 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
11 | cvlatcvr1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
12 | cvlatcvr1.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 9, 11, 4, 5, 12, 6 | cvlcvrp 38986 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
14 | 10, 13 | syl3an2 1161 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃(meet‘𝐾)𝑄) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
15 | 8, 14 | bitrd 278 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5152 ‘cfv 6553 (class class class)co 7423 Basecbs 17208 joincjn 18331 meetcmee 18332 0.cp0 18443 CLatccla 18518 OMLcoml 38821 ⋖ ccvr 38908 Atomscatm 38909 AtLatcal 38910 CvLatclc 38911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-lat 18452 df-clat 18519 df-oposet 38822 df-ol 38824 df-oml 38825 df-covers 38912 df-ats 38913 df-atl 38944 df-cvlat 38968 |
This theorem is referenced by: cvlatcvr2 38988 atcvr1 39064 |
Copyright terms: Public domain | W3C validator |