| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39337 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39303 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 AtLatcal 39242 CvLatclc 39243 HLchlt 39328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cvlat 39300 df-hlat 39329 |
| This theorem is referenced by: hllat 39341 hlomcmat 39343 intnatN 39386 cvratlem 39400 atcvrj0 39407 atcvrneN 39409 atcvrj1 39410 atcvrj2b 39411 atltcvr 39414 cvrat4 39422 2atjm 39424 atbtwn 39425 3dim2 39447 2dim 39449 1cvrjat 39454 ps-2 39457 ps-2b 39461 islln3 39489 llnnleat 39492 llnexatN 39500 2llnmat 39503 2atm 39506 2llnm3N 39548 2llnm4 39549 2llnmeqat 39550 dalem21 39673 dalem24 39676 dalem25 39677 dalem54 39705 dalem55 39706 dalem57 39708 pmapat 39742 pmapeq0 39745 isline4N 39756 2lnat 39763 2llnma1b 39765 cdlema2N 39771 cdlemblem 39772 pmapjat1 39832 llnexchb2lem 39847 pol1N 39889 pnonsingN 39912 pclfinclN 39929 lhpocnle 39995 lhpmat 40009 lhpmatb 40010 lhp2at0 40011 lhp2atnle 40012 lhp2at0nle 40014 lhpat3 40025 4atexlemcnd 40051 trlatn0 40151 ltrnnidn 40153 trlnidatb 40156 trlnle 40165 trlval3 40166 trlval4 40167 cdlemc5 40174 cdleme0e 40196 cdleme3 40216 cdleme7c 40224 cdleme7ga 40227 cdleme7 40228 cdleme11k 40247 cdleme15b 40254 cdleme16b 40258 cdleme16e 40261 cdleme16f 40262 cdlemednpq 40278 cdleme20zN 40280 cdleme20j 40297 cdleme22aa 40318 cdleme22cN 40321 cdleme22d 40322 cdlemf2 40541 cdlemb3 40585 cdlemg12e 40626 cdlemg17dALTN 40643 cdlemg19a 40662 cdlemg27b 40675 cdlemg31d 40679 cdlemg33c 40687 cdlemg33e 40689 trlcone 40707 cdlemi 40799 tendotr 40809 cdlemk17 40837 cdlemk52 40933 cdleml1N 40955 dian0 41018 dia0 41031 dia2dimlem1 41043 dia2dimlem2 41044 dia2dimlem3 41045 dih0cnv 41262 dihmeetlem4preN 41285 dihmeetlem7N 41289 dihmeetlem17N 41302 dihlspsnat 41312 dihatexv 41317 |
| Copyright terms: Public domain | W3C validator |