| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39359 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39325 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 AtLatcal 39264 CvLatclc 39265 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: hllat 39363 hlomcmat 39365 intnatN 39408 cvratlem 39422 atcvrj0 39429 atcvrneN 39431 atcvrj1 39432 atcvrj2b 39433 atltcvr 39436 cvrat4 39444 2atjm 39446 atbtwn 39447 3dim2 39469 2dim 39471 1cvrjat 39476 ps-2 39479 ps-2b 39483 islln3 39511 llnnleat 39514 llnexatN 39522 2llnmat 39525 2atm 39528 2llnm3N 39570 2llnm4 39571 2llnmeqat 39572 dalem21 39695 dalem24 39698 dalem25 39699 dalem54 39727 dalem55 39728 dalem57 39730 pmapat 39764 pmapeq0 39767 isline4N 39778 2lnat 39785 2llnma1b 39787 cdlema2N 39793 cdlemblem 39794 pmapjat1 39854 llnexchb2lem 39869 pol1N 39911 pnonsingN 39934 pclfinclN 39951 lhpocnle 40017 lhpmat 40031 lhpmatb 40032 lhp2at0 40033 lhp2atnle 40034 lhp2at0nle 40036 lhpat3 40047 4atexlemcnd 40073 trlatn0 40173 ltrnnidn 40175 trlnidatb 40178 trlnle 40187 trlval3 40188 trlval4 40189 cdlemc5 40196 cdleme0e 40218 cdleme3 40238 cdleme7c 40246 cdleme7ga 40249 cdleme7 40250 cdleme11k 40269 cdleme15b 40276 cdleme16b 40280 cdleme16e 40283 cdleme16f 40284 cdlemednpq 40300 cdleme20zN 40302 cdleme20j 40319 cdleme22aa 40340 cdleme22cN 40343 cdleme22d 40344 cdlemf2 40563 cdlemb3 40607 cdlemg12e 40648 cdlemg17dALTN 40665 cdlemg19a 40684 cdlemg27b 40697 cdlemg31d 40701 cdlemg33c 40709 cdlemg33e 40711 trlcone 40729 cdlemi 40821 tendotr 40831 cdlemk17 40859 cdlemk52 40955 cdleml1N 40977 dian0 41040 dia0 41053 dia2dimlem1 41065 dia2dimlem2 41066 dia2dimlem3 41067 dih0cnv 41284 dihmeetlem4preN 41307 dihmeetlem7N 41311 dihmeetlem17N 41324 dihlspsnat 41334 dihatexv 41339 |
| Copyright terms: Public domain | W3C validator |