Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37373 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 37339 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 AtLatcal 37278 CvLatclc 37279 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: hllat 37377 hlomcmat 37379 intnatN 37421 cvratlem 37435 atcvrj0 37442 atcvrneN 37444 atcvrj1 37445 atcvrj2b 37446 atltcvr 37449 cvrat4 37457 2atjm 37459 atbtwn 37460 3dim2 37482 2dim 37484 1cvrjat 37489 ps-2 37492 ps-2b 37496 islln3 37524 llnnleat 37527 llnexatN 37535 2llnmat 37538 2atm 37541 2llnm3N 37583 2llnm4 37584 2llnmeqat 37585 dalem21 37708 dalem24 37711 dalem25 37712 dalem54 37740 dalem55 37741 dalem57 37743 pmapat 37777 pmapeq0 37780 isline4N 37791 2lnat 37798 2llnma1b 37800 cdlema2N 37806 cdlemblem 37807 pmapjat1 37867 llnexchb2lem 37882 pol1N 37924 pnonsingN 37947 pclfinclN 37964 lhpocnle 38030 lhpmat 38044 lhpmatb 38045 lhp2at0 38046 lhp2atnle 38047 lhp2at0nle 38049 lhpat3 38060 4atexlemcnd 38086 trlatn0 38186 ltrnnidn 38188 trlnidatb 38191 trlnle 38200 trlval3 38201 trlval4 38202 cdlemc5 38209 cdleme0e 38231 cdleme3 38251 cdleme7c 38259 cdleme7ga 38262 cdleme7 38263 cdleme11k 38282 cdleme15b 38289 cdleme16b 38293 cdleme16e 38296 cdleme16f 38297 cdlemednpq 38313 cdleme20zN 38315 cdleme20j 38332 cdleme22aa 38353 cdleme22cN 38356 cdleme22d 38357 cdlemf2 38576 cdlemb3 38620 cdlemg12e 38661 cdlemg17dALTN 38678 cdlemg19a 38697 cdlemg27b 38710 cdlemg31d 38714 cdlemg33c 38722 cdlemg33e 38724 trlcone 38742 cdlemi 38834 tendotr 38844 cdlemk17 38872 cdlemk52 38968 cdleml1N 38990 dian0 39053 dia0 39066 dia2dimlem1 39078 dia2dimlem2 39079 dia2dimlem3 39080 dih0cnv 39297 dihmeetlem4preN 39320 dihmeetlem7N 39324 dihmeetlem17N 39337 dihlspsnat 39347 dihatexv 39352 |
Copyright terms: Public domain | W3C validator |