| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39323 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39289 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 AtLatcal 39228 CvLatclc 39229 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: hllat 39327 hlomcmat 39329 intnatN 39372 cvratlem 39386 atcvrj0 39393 atcvrneN 39395 atcvrj1 39396 atcvrj2b 39397 atltcvr 39400 cvrat4 39408 2atjm 39410 atbtwn 39411 3dim2 39433 2dim 39435 1cvrjat 39440 ps-2 39443 ps-2b 39447 islln3 39475 llnnleat 39478 llnexatN 39486 2llnmat 39489 2atm 39492 2llnm3N 39534 2llnm4 39535 2llnmeqat 39536 dalem21 39659 dalem24 39662 dalem25 39663 dalem54 39691 dalem55 39692 dalem57 39694 pmapat 39728 pmapeq0 39731 isline4N 39742 2lnat 39749 2llnma1b 39751 cdlema2N 39757 cdlemblem 39758 pmapjat1 39818 llnexchb2lem 39833 pol1N 39875 pnonsingN 39898 pclfinclN 39915 lhpocnle 39981 lhpmat 39995 lhpmatb 39996 lhp2at0 39997 lhp2atnle 39998 lhp2at0nle 40000 lhpat3 40011 4atexlemcnd 40037 trlatn0 40137 ltrnnidn 40139 trlnidatb 40142 trlnle 40151 trlval3 40152 trlval4 40153 cdlemc5 40160 cdleme0e 40182 cdleme3 40202 cdleme7c 40210 cdleme7ga 40213 cdleme7 40214 cdleme11k 40233 cdleme15b 40240 cdleme16b 40244 cdleme16e 40247 cdleme16f 40248 cdlemednpq 40264 cdleme20zN 40266 cdleme20j 40283 cdleme22aa 40304 cdleme22cN 40307 cdleme22d 40308 cdlemf2 40527 cdlemb3 40571 cdlemg12e 40612 cdlemg17dALTN 40629 cdlemg19a 40648 cdlemg27b 40661 cdlemg31d 40665 cdlemg33c 40673 cdlemg33e 40675 trlcone 40693 cdlemi 40785 tendotr 40795 cdlemk17 40823 cdlemk52 40919 cdleml1N 40941 dian0 41004 dia0 41017 dia2dimlem1 41029 dia2dimlem2 41030 dia2dimlem3 41031 dih0cnv 41248 dihmeetlem4preN 41271 dihmeetlem7N 41275 dihmeetlem17N 41288 dihlspsnat 41298 dihatexv 41303 |
| Copyright terms: Public domain | W3C validator |