| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39397 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39363 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 AtLatcal 39302 CvLatclc 39303 HLchlt 39388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-cvlat 39360 df-hlat 39389 |
| This theorem is referenced by: hllat 39401 hlomcmat 39403 intnatN 39445 cvratlem 39459 atcvrj0 39466 atcvrneN 39468 atcvrj1 39469 atcvrj2b 39470 atltcvr 39473 cvrat4 39481 2atjm 39483 atbtwn 39484 3dim2 39506 2dim 39508 1cvrjat 39513 ps-2 39516 ps-2b 39520 islln3 39548 llnnleat 39551 llnexatN 39559 2llnmat 39562 2atm 39565 2llnm3N 39607 2llnm4 39608 2llnmeqat 39609 dalem21 39732 dalem24 39735 dalem25 39736 dalem54 39764 dalem55 39765 dalem57 39767 pmapat 39801 pmapeq0 39804 isline4N 39815 2lnat 39822 2llnma1b 39824 cdlema2N 39830 cdlemblem 39831 pmapjat1 39891 llnexchb2lem 39906 pol1N 39948 pnonsingN 39971 pclfinclN 39988 lhpocnle 40054 lhpmat 40068 lhpmatb 40069 lhp2at0 40070 lhp2atnle 40071 lhp2at0nle 40073 lhpat3 40084 4atexlemcnd 40110 trlatn0 40210 ltrnnidn 40212 trlnidatb 40215 trlnle 40224 trlval3 40225 trlval4 40226 cdlemc5 40233 cdleme0e 40255 cdleme3 40275 cdleme7c 40283 cdleme7ga 40286 cdleme7 40287 cdleme11k 40306 cdleme15b 40313 cdleme16b 40317 cdleme16e 40320 cdleme16f 40321 cdlemednpq 40337 cdleme20zN 40339 cdleme20j 40356 cdleme22aa 40377 cdleme22cN 40380 cdleme22d 40381 cdlemf2 40600 cdlemb3 40644 cdlemg12e 40685 cdlemg17dALTN 40702 cdlemg19a 40721 cdlemg27b 40734 cdlemg31d 40738 cdlemg33c 40746 cdlemg33e 40748 trlcone 40766 cdlemi 40858 tendotr 40868 cdlemk17 40896 cdlemk52 40992 cdleml1N 41014 dian0 41077 dia0 41090 dia2dimlem1 41102 dia2dimlem2 41103 dia2dimlem3 41104 dih0cnv 41321 dihmeetlem4preN 41344 dihmeetlem7N 41348 dihmeetlem17N 41361 dihlspsnat 41371 dihatexv 41376 |
| Copyright terms: Public domain | W3C validator |