Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37300 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 37266 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 AtLatcal 37205 CvLatclc 37206 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: hllat 37304 hlomcmat 37306 intnatN 37348 cvratlem 37362 atcvrj0 37369 atcvrneN 37371 atcvrj1 37372 atcvrj2b 37373 atltcvr 37376 cvrat4 37384 2atjm 37386 atbtwn 37387 3dim2 37409 2dim 37411 1cvrjat 37416 ps-2 37419 ps-2b 37423 islln3 37451 llnnleat 37454 llnexatN 37462 2llnmat 37465 2atm 37468 2llnm3N 37510 2llnm4 37511 2llnmeqat 37512 dalem21 37635 dalem24 37638 dalem25 37639 dalem54 37667 dalem55 37668 dalem57 37670 pmapat 37704 pmapeq0 37707 isline4N 37718 2lnat 37725 2llnma1b 37727 cdlema2N 37733 cdlemblem 37734 pmapjat1 37794 llnexchb2lem 37809 pol1N 37851 pnonsingN 37874 pclfinclN 37891 lhpocnle 37957 lhpmat 37971 lhpmatb 37972 lhp2at0 37973 lhp2atnle 37974 lhp2at0nle 37976 lhpat3 37987 4atexlemcnd 38013 trlatn0 38113 ltrnnidn 38115 trlnidatb 38118 trlnle 38127 trlval3 38128 trlval4 38129 cdlemc5 38136 cdleme0e 38158 cdleme3 38178 cdleme7c 38186 cdleme7ga 38189 cdleme7 38190 cdleme11k 38209 cdleme15b 38216 cdleme16b 38220 cdleme16e 38223 cdleme16f 38224 cdlemednpq 38240 cdleme20zN 38242 cdleme20j 38259 cdleme22aa 38280 cdleme22cN 38283 cdleme22d 38284 cdlemf2 38503 cdlemb3 38547 cdlemg12e 38588 cdlemg17dALTN 38605 cdlemg19a 38624 cdlemg27b 38637 cdlemg31d 38641 cdlemg33c 38649 cdlemg33e 38651 trlcone 38669 cdlemi 38761 tendotr 38771 cdlemk17 38799 cdlemk52 38895 cdleml1N 38917 dian0 38980 dia0 38993 dia2dimlem1 39005 dia2dimlem2 39006 dia2dimlem3 39007 dih0cnv 39224 dihmeetlem4preN 39247 dihmeetlem7N 39251 dihmeetlem17N 39264 dihlspsnat 39274 dihatexv 39279 |
Copyright terms: Public domain | W3C validator |