Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 37585 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 37551 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 AtLatcal 37490 CvLatclc 37491 HLchlt 37576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 df-ov 7316 df-cvlat 37548 df-hlat 37577 |
This theorem is referenced by: hllat 37589 hlomcmat 37591 intnatN 37633 cvratlem 37647 atcvrj0 37654 atcvrneN 37656 atcvrj1 37657 atcvrj2b 37658 atltcvr 37661 cvrat4 37669 2atjm 37671 atbtwn 37672 3dim2 37694 2dim 37696 1cvrjat 37701 ps-2 37704 ps-2b 37708 islln3 37736 llnnleat 37739 llnexatN 37747 2llnmat 37750 2atm 37753 2llnm3N 37795 2llnm4 37796 2llnmeqat 37797 dalem21 37920 dalem24 37923 dalem25 37924 dalem54 37952 dalem55 37953 dalem57 37955 pmapat 37989 pmapeq0 37992 isline4N 38003 2lnat 38010 2llnma1b 38012 cdlema2N 38018 cdlemblem 38019 pmapjat1 38079 llnexchb2lem 38094 pol1N 38136 pnonsingN 38159 pclfinclN 38176 lhpocnle 38242 lhpmat 38256 lhpmatb 38257 lhp2at0 38258 lhp2atnle 38259 lhp2at0nle 38261 lhpat3 38272 4atexlemcnd 38298 trlatn0 38398 ltrnnidn 38400 trlnidatb 38403 trlnle 38412 trlval3 38413 trlval4 38414 cdlemc5 38421 cdleme0e 38443 cdleme3 38463 cdleme7c 38471 cdleme7ga 38474 cdleme7 38475 cdleme11k 38494 cdleme15b 38501 cdleme16b 38505 cdleme16e 38508 cdleme16f 38509 cdlemednpq 38525 cdleme20zN 38527 cdleme20j 38544 cdleme22aa 38565 cdleme22cN 38568 cdleme22d 38569 cdlemf2 38788 cdlemb3 38832 cdlemg12e 38873 cdlemg17dALTN 38890 cdlemg19a 38909 cdlemg27b 38922 cdlemg31d 38926 cdlemg33c 38934 cdlemg33e 38936 trlcone 38954 cdlemi 39046 tendotr 39056 cdlemk17 39084 cdlemk52 39180 cdleml1N 39202 dian0 39265 dia0 39278 dia2dimlem1 39290 dia2dimlem2 39291 dia2dimlem3 39292 dih0cnv 39509 dihmeetlem4preN 39532 dihmeetlem7N 39536 dihmeetlem17N 39549 dihlspsnat 39559 dihatexv 39564 |
Copyright terms: Public domain | W3C validator |