![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 39315 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 39281 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 AtLatcal 39220 CvLatclc 39221 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: hllat 39319 hlomcmat 39321 intnatN 39364 cvratlem 39378 atcvrj0 39385 atcvrneN 39387 atcvrj1 39388 atcvrj2b 39389 atltcvr 39392 cvrat4 39400 2atjm 39402 atbtwn 39403 3dim2 39425 2dim 39427 1cvrjat 39432 ps-2 39435 ps-2b 39439 islln3 39467 llnnleat 39470 llnexatN 39478 2llnmat 39481 2atm 39484 2llnm3N 39526 2llnm4 39527 2llnmeqat 39528 dalem21 39651 dalem24 39654 dalem25 39655 dalem54 39683 dalem55 39684 dalem57 39686 pmapat 39720 pmapeq0 39723 isline4N 39734 2lnat 39741 2llnma1b 39743 cdlema2N 39749 cdlemblem 39750 pmapjat1 39810 llnexchb2lem 39825 pol1N 39867 pnonsingN 39890 pclfinclN 39907 lhpocnle 39973 lhpmat 39987 lhpmatb 39988 lhp2at0 39989 lhp2atnle 39990 lhp2at0nle 39992 lhpat3 40003 4atexlemcnd 40029 trlatn0 40129 ltrnnidn 40131 trlnidatb 40134 trlnle 40143 trlval3 40144 trlval4 40145 cdlemc5 40152 cdleme0e 40174 cdleme3 40194 cdleme7c 40202 cdleme7ga 40205 cdleme7 40206 cdleme11k 40225 cdleme15b 40232 cdleme16b 40236 cdleme16e 40239 cdleme16f 40240 cdlemednpq 40256 cdleme20zN 40258 cdleme20j 40275 cdleme22aa 40296 cdleme22cN 40299 cdleme22d 40300 cdlemf2 40519 cdlemb3 40563 cdlemg12e 40604 cdlemg17dALTN 40621 cdlemg19a 40640 cdlemg27b 40653 cdlemg31d 40657 cdlemg33c 40665 cdlemg33e 40667 trlcone 40685 cdlemi 40777 tendotr 40787 cdlemk17 40815 cdlemk52 40911 cdleml1N 40933 dian0 40996 dia0 41009 dia2dimlem1 41021 dia2dimlem2 41022 dia2dimlem3 41023 dih0cnv 41240 dihmeetlem4preN 41263 dihmeetlem7N 41267 dihmeetlem17N 41280 dihlspsnat 41290 dihatexv 41295 |
Copyright terms: Public domain | W3C validator |