| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39478 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39444 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 AtLatcal 39383 CvLatclc 39384 HLchlt 39469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-cvlat 39441 df-hlat 39470 |
| This theorem is referenced by: hllat 39482 hlomcmat 39484 intnatN 39526 cvratlem 39540 atcvrj0 39547 atcvrneN 39549 atcvrj1 39550 atcvrj2b 39551 atltcvr 39554 cvrat4 39562 2atjm 39564 atbtwn 39565 3dim2 39587 2dim 39589 1cvrjat 39594 ps-2 39597 ps-2b 39601 islln3 39629 llnnleat 39632 llnexatN 39640 2llnmat 39643 2atm 39646 2llnm3N 39688 2llnm4 39689 2llnmeqat 39690 dalem21 39813 dalem24 39816 dalem25 39817 dalem54 39845 dalem55 39846 dalem57 39848 pmapat 39882 pmapeq0 39885 isline4N 39896 2lnat 39903 2llnma1b 39905 cdlema2N 39911 cdlemblem 39912 pmapjat1 39972 llnexchb2lem 39987 pol1N 40029 pnonsingN 40052 pclfinclN 40069 lhpocnle 40135 lhpmat 40149 lhpmatb 40150 lhp2at0 40151 lhp2atnle 40152 lhp2at0nle 40154 lhpat3 40165 4atexlemcnd 40191 trlatn0 40291 ltrnnidn 40293 trlnidatb 40296 trlnle 40305 trlval3 40306 trlval4 40307 cdlemc5 40314 cdleme0e 40336 cdleme3 40356 cdleme7c 40364 cdleme7ga 40367 cdleme7 40368 cdleme11k 40387 cdleme15b 40394 cdleme16b 40398 cdleme16e 40401 cdleme16f 40402 cdlemednpq 40418 cdleme20zN 40420 cdleme20j 40437 cdleme22aa 40458 cdleme22cN 40461 cdleme22d 40462 cdlemf2 40681 cdlemb3 40725 cdlemg12e 40766 cdlemg17dALTN 40783 cdlemg19a 40802 cdlemg27b 40815 cdlemg31d 40819 cdlemg33c 40827 cdlemg33e 40829 trlcone 40847 cdlemi 40939 tendotr 40949 cdlemk17 40977 cdlemk52 41073 cdleml1N 41095 dian0 41158 dia0 41171 dia2dimlem1 41183 dia2dimlem2 41184 dia2dimlem3 41185 dih0cnv 41402 dihmeetlem4preN 41425 dihmeetlem7N 41429 dihmeetlem17N 41442 dihlspsnat 41452 dihatexv 41457 |
| Copyright terms: Public domain | W3C validator |