| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcvl 39352 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 2 | cvlatl 39318 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 AtLatcal 39257 CvLatclc 39258 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: hllat 39356 hlomcmat 39358 intnatN 39401 cvratlem 39415 atcvrj0 39422 atcvrneN 39424 atcvrj1 39425 atcvrj2b 39426 atltcvr 39429 cvrat4 39437 2atjm 39439 atbtwn 39440 3dim2 39462 2dim 39464 1cvrjat 39469 ps-2 39472 ps-2b 39476 islln3 39504 llnnleat 39507 llnexatN 39515 2llnmat 39518 2atm 39521 2llnm3N 39563 2llnm4 39564 2llnmeqat 39565 dalem21 39688 dalem24 39691 dalem25 39692 dalem54 39720 dalem55 39721 dalem57 39723 pmapat 39757 pmapeq0 39760 isline4N 39771 2lnat 39778 2llnma1b 39780 cdlema2N 39786 cdlemblem 39787 pmapjat1 39847 llnexchb2lem 39862 pol1N 39904 pnonsingN 39927 pclfinclN 39944 lhpocnle 40010 lhpmat 40024 lhpmatb 40025 lhp2at0 40026 lhp2atnle 40027 lhp2at0nle 40029 lhpat3 40040 4atexlemcnd 40066 trlatn0 40166 ltrnnidn 40168 trlnidatb 40171 trlnle 40180 trlval3 40181 trlval4 40182 cdlemc5 40189 cdleme0e 40211 cdleme3 40231 cdleme7c 40239 cdleme7ga 40242 cdleme7 40243 cdleme11k 40262 cdleme15b 40269 cdleme16b 40273 cdleme16e 40276 cdleme16f 40277 cdlemednpq 40293 cdleme20zN 40295 cdleme20j 40312 cdleme22aa 40333 cdleme22cN 40336 cdleme22d 40337 cdlemf2 40556 cdlemb3 40600 cdlemg12e 40641 cdlemg17dALTN 40658 cdlemg19a 40677 cdlemg27b 40690 cdlemg31d 40694 cdlemg33c 40702 cdlemg33e 40704 trlcone 40722 cdlemi 40814 tendotr 40824 cdlemk17 40852 cdlemk52 40948 cdleml1N 40970 dian0 41033 dia0 41046 dia2dimlem1 41058 dia2dimlem2 41059 dia2dimlem3 41060 dih0cnv 41277 dihmeetlem4preN 41300 dihmeetlem7N 41304 dihmeetlem17N 41317 dihlspsnat 41327 dihatexv 41332 |
| Copyright terms: Public domain | W3C validator |