![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatl | Structured version Visualization version GIF version |
Description: A Hilbert lattice is atomic. (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
hlatl | ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcvl 39340 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
2 | cvlatl 39306 | . 2 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 AtLatcal 39245 CvLatclc 39246 HLchlt 39331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-cvlat 39303 df-hlat 39332 |
This theorem is referenced by: hllat 39344 hlomcmat 39346 intnatN 39389 cvratlem 39403 atcvrj0 39410 atcvrneN 39412 atcvrj1 39413 atcvrj2b 39414 atltcvr 39417 cvrat4 39425 2atjm 39427 atbtwn 39428 3dim2 39450 2dim 39452 1cvrjat 39457 ps-2 39460 ps-2b 39464 islln3 39492 llnnleat 39495 llnexatN 39503 2llnmat 39506 2atm 39509 2llnm3N 39551 2llnm4 39552 2llnmeqat 39553 dalem21 39676 dalem24 39679 dalem25 39680 dalem54 39708 dalem55 39709 dalem57 39711 pmapat 39745 pmapeq0 39748 isline4N 39759 2lnat 39766 2llnma1b 39768 cdlema2N 39774 cdlemblem 39775 pmapjat1 39835 llnexchb2lem 39850 pol1N 39892 pnonsingN 39915 pclfinclN 39932 lhpocnle 39998 lhpmat 40012 lhpmatb 40013 lhp2at0 40014 lhp2atnle 40015 lhp2at0nle 40017 lhpat3 40028 4atexlemcnd 40054 trlatn0 40154 ltrnnidn 40156 trlnidatb 40159 trlnle 40168 trlval3 40169 trlval4 40170 cdlemc5 40177 cdleme0e 40199 cdleme3 40219 cdleme7c 40227 cdleme7ga 40230 cdleme7 40231 cdleme11k 40250 cdleme15b 40257 cdleme16b 40261 cdleme16e 40264 cdleme16f 40265 cdlemednpq 40281 cdleme20zN 40283 cdleme20j 40300 cdleme22aa 40321 cdleme22cN 40324 cdleme22d 40325 cdlemf2 40544 cdlemb3 40588 cdlemg12e 40629 cdlemg17dALTN 40646 cdlemg19a 40665 cdlemg27b 40678 cdlemg31d 40682 cdlemg33c 40690 cdlemg33e 40692 trlcone 40710 cdlemi 40802 tendotr 40812 cdlemk17 40840 cdlemk52 40936 cdleml1N 40958 dian0 41021 dia0 41034 dia2dimlem1 41046 dia2dimlem2 41047 dia2dimlem3 41048 dih0cnv 41265 dihmeetlem4preN 41288 dihmeetlem7N 41292 dihmeetlem17N 41305 dihlspsnat 41315 dihatexv 41320 |
Copyright terms: Public domain | W3C validator |