Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 20807 | . 2 class ℝfld | |
2 | ccnfld 20595 | . . 3 class ℂfld | |
3 | cr 10871 | . . 3 class ℝ | |
4 | cress 16939 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7271 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1542 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 20809 remulg 20810 resubdrg 20811 resubgval 20812 replusg 20813 remulr 20814 re0g 20815 re1r 20816 rele2 20817 relt 20818 reds 20819 redvr 20820 retos 20821 refld 20822 refldcj 20823 regsumsupp 20825 rzgrp 20826 tgioo3 23966 recvs 24307 recvsOLD 24308 retopn 24541 recms 24542 reust 24543 rrxcph 24554 rrxdsfi 24573 reefgim 25607 amgmlem 26137 nn0omnd 31541 nn0archi 31543 xrge0slmod 31544 ccfldextrr 31719 ccfldsrarelvec 31737 ccfldextdgrr 31738 rezh 31917 rrhcn 31943 rerrext 31955 cnrrext 31956 qqtopn 31957 bj-rveccmod 35469 amgmwlem 46475 |
Copyright terms: Public domain | W3C validator |