| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21562 | . 2 class ℝfld | |
| 2 | ccnfld 21313 | . . 3 class ℂfld | |
| 3 | cr 11126 | . . 3 class ℝ | |
| 4 | cress 17249 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7403 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21564 remulg 21565 resubdrg 21566 resubgval 21567 replusg 21568 remulr 21569 re0g 21570 re1r 21571 rele2 21572 relt 21573 reds 21574 redvr 21575 retos 21576 refld 21577 refldcj 21578 regsumsupp 21580 rzgrp 21581 tgioo3 24743 recvs 25095 recvsOLD 25096 retopn 25329 recms 25330 reust 25331 rrxcph 25342 rrxdsfi 25361 reefgim 26410 amgmlem 26950 nn0omnd 33306 nn0archi 33308 xrge0slmod 33309 ccfldextrr 33634 ccfldsrarelvec 33658 ccfldextdgrr 33659 rezh 33946 rrhcn 33974 rerrext 33986 cnrrext 33987 qqtopn 33988 bj-rveccmod 37266 amgmwlem 49614 |
| Copyright terms: Public domain | W3C validator |