![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 21377 | . 2 class ℝfld | |
2 | ccnfld 21145 | . . 3 class ℂfld | |
3 | cr 11112 | . . 3 class ℝ | |
4 | cress 17178 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7412 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1540 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 21379 remulg 21380 resubdrg 21381 resubgval 21382 replusg 21383 remulr 21384 re0g 21385 re1r 21386 rele2 21387 relt 21388 reds 21389 redvr 21390 retos 21391 refld 21392 refldcj 21393 regsumsupp 21395 rzgrp 21396 tgioo3 24542 recvs 24894 recvsOLD 24895 retopn 25128 recms 25129 reust 25130 rrxcph 25141 rrxdsfi 25160 reefgim 26195 amgmlem 26727 nn0omnd 32727 nn0archi 32729 xrge0slmod 32730 ccfldextrr 33012 ccfldsrarelvec 33031 ccfldextdgrr 33032 rezh 33246 rrhcn 33272 rerrext 33284 cnrrext 33285 qqtopn 33286 bj-rveccmod 36487 amgmwlem 47938 |
Copyright terms: Public domain | W3C validator |