Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 20818 | . 2 class ℝfld | |
2 | ccnfld 20606 | . . 3 class ℂfld | |
3 | cr 10879 | . . 3 class ℝ | |
4 | cress 16950 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7284 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1539 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 20820 remulg 20821 resubdrg 20822 resubgval 20823 replusg 20824 remulr 20825 re0g 20826 re1r 20827 rele2 20828 relt 20829 reds 20830 redvr 20831 retos 20832 refld 20833 refldcj 20834 regsumsupp 20836 rzgrp 20837 tgioo3 23977 recvs 24318 recvsOLD 24319 retopn 24552 recms 24553 reust 24554 rrxcph 24565 rrxdsfi 24584 reefgim 25618 amgmlem 26148 nn0omnd 31554 nn0archi 31556 xrge0slmod 31557 ccfldextrr 31732 ccfldsrarelvec 31750 ccfldextdgrr 31751 rezh 31930 rrhcn 31956 rerrext 31968 cnrrext 31969 qqtopn 31970 bj-rveccmod 35482 amgmwlem 46517 |
Copyright terms: Public domain | W3C validator |