| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21529 | . 2 class ℝfld | |
| 2 | ccnfld 21279 | . . 3 class ℂfld | |
| 3 | cr 11027 | . . 3 class ℝ | |
| 4 | cress 17159 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7353 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21531 remulg 21532 resubdrg 21533 resubgval 21534 replusg 21535 remulr 21536 re0g 21537 re1r 21538 rele2 21539 relt 21540 reds 21541 redvr 21542 retos 21543 refld 21544 refldcj 21545 regsumsupp 21547 rzgrp 21548 tgioo3 24710 recvs 25062 retopn 25295 recms 25296 reust 25297 rrxcph 25308 rrxdsfi 25327 reefgim 26376 amgmlem 26916 nn0omnd 33292 nn0archi 33294 xrge0slmod 33295 ccfldextrr 33618 ccfldsrarelvec 33642 ccfldextdgrr 33643 rezh 33935 rrhcn 33963 rerrext 33975 cnrrext 33976 qqtopn 33977 bj-rveccmod 37275 amgmwlem 49788 |
| Copyright terms: Public domain | W3C validator |