![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 21376 | . 2 class ℝfld | |
2 | ccnfld 21144 | . . 3 class ℂfld | |
3 | cr 11111 | . . 3 class ℝ | |
4 | cress 17177 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7411 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1539 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 21378 remulg 21379 resubdrg 21380 resubgval 21381 replusg 21382 remulr 21383 re0g 21384 re1r 21385 rele2 21386 relt 21387 reds 21388 redvr 21389 retos 21390 refld 21391 refldcj 21392 regsumsupp 21394 rzgrp 21395 tgioo3 24541 recvs 24893 recvsOLD 24894 retopn 25127 recms 25128 reust 25129 rrxcph 25140 rrxdsfi 25159 reefgim 26198 amgmlem 26730 nn0omnd 32730 nn0archi 32732 xrge0slmod 32733 ccfldextrr 33015 ccfldsrarelvec 33034 ccfldextdgrr 33035 rezh 33249 rrhcn 33275 rerrext 33287 cnrrext 33288 qqtopn 33289 bj-rveccmod 36486 amgmwlem 47936 |
Copyright terms: Public domain | W3C validator |