| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21520 | . 2 class ℝfld | |
| 2 | ccnfld 21271 | . . 3 class ℂfld | |
| 3 | cr 11074 | . . 3 class ℝ | |
| 4 | cress 17207 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7390 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21522 remulg 21523 resubdrg 21524 resubgval 21525 replusg 21526 remulr 21527 re0g 21528 re1r 21529 rele2 21530 relt 21531 reds 21532 redvr 21533 retos 21534 refld 21535 refldcj 21536 regsumsupp 21538 rzgrp 21539 tgioo3 24701 recvs 25053 retopn 25286 recms 25287 reust 25288 rrxcph 25299 rrxdsfi 25318 reefgim 26367 amgmlem 26907 nn0omnd 33323 nn0archi 33325 xrge0slmod 33326 ccfldextrr 33649 ccfldsrarelvec 33673 ccfldextdgrr 33674 rezh 33966 rrhcn 33994 rerrext 34006 cnrrext 34007 qqtopn 34008 bj-rveccmod 37297 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |