Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 20721 | . 2 class ℝfld | |
2 | ccnfld 20510 | . . 3 class ℂfld | |
3 | cr 10801 | . . 3 class ℝ | |
4 | cress 16867 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7255 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1539 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 20723 remulg 20724 resubdrg 20725 resubgval 20726 replusg 20727 remulr 20728 re0g 20729 re1r 20730 rele2 20731 relt 20732 reds 20733 redvr 20734 retos 20735 refld 20736 refldcj 20737 regsumsupp 20739 rzgrp 20740 tgioo3 23874 recvs 24215 retopn 24448 recms 24449 reust 24450 rrxcph 24461 rrxdsfi 24480 reefgim 25514 amgmlem 26044 nn0omnd 31447 nn0archi 31449 xrge0slmod 31450 ccfldextrr 31625 ccfldsrarelvec 31643 ccfldextdgrr 31644 rezh 31821 rrhcn 31847 rerrext 31859 cnrrext 31860 qqtopn 31861 bj-rveccmod 35400 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |