![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 21148 | . 2 class ℝfld | |
2 | ccnfld 20936 | . . 3 class ℂfld | |
3 | cr 11105 | . . 3 class ℝ | |
4 | cress 17169 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7405 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1541 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 21150 remulg 21151 resubdrg 21152 resubgval 21153 replusg 21154 remulr 21155 re0g 21156 re1r 21157 rele2 21158 relt 21159 reds 21160 redvr 21161 retos 21162 refld 21163 refldcj 21164 regsumsupp 21166 rzgrp 21167 tgioo3 24312 recvs 24653 recvsOLD 24654 retopn 24887 recms 24888 reust 24889 rrxcph 24900 rrxdsfi 24919 reefgim 25953 amgmlem 26483 nn0omnd 32448 nn0archi 32450 xrge0slmod 32451 ccfldextrr 32715 ccfldsrarelvec 32733 ccfldextdgrr 32734 rezh 32939 rrhcn 32965 rerrext 32977 cnrrext 32978 qqtopn 32979 bj-rveccmod 36171 amgmwlem 47802 |
Copyright terms: Public domain | W3C validator |