| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21513 | . 2 class ℝfld | |
| 2 | ccnfld 21264 | . . 3 class ℂfld | |
| 3 | cr 11067 | . . 3 class ℝ | |
| 4 | cress 17200 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7387 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21515 remulg 21516 resubdrg 21517 resubgval 21518 replusg 21519 remulr 21520 re0g 21521 re1r 21522 rele2 21523 relt 21524 reds 21525 redvr 21526 retos 21527 refld 21528 refldcj 21529 regsumsupp 21531 rzgrp 21532 tgioo3 24694 recvs 25046 retopn 25279 recms 25280 reust 25281 rrxcph 25292 rrxdsfi 25311 reefgim 26360 amgmlem 26900 nn0omnd 33316 nn0archi 33318 xrge0slmod 33319 ccfldextrr 33642 ccfldsrarelvec 33666 ccfldextdgrr 33667 rezh 33959 rrhcn 33987 rerrext 33999 cnrrext 34000 qqtopn 34001 bj-rveccmod 37290 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |