| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21543 | . 2 class ℝfld | |
| 2 | ccnfld 21293 | . . 3 class ℂfld | |
| 3 | cr 11012 | . . 3 class ℝ | |
| 4 | cress 17143 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7352 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21545 remulg 21546 resubdrg 21547 resubgval 21548 replusg 21549 remulr 21550 re0g 21551 re1r 21552 rele2 21553 relt 21554 reds 21555 redvr 21556 retos 21557 refld 21558 refldcj 21559 regsumsupp 21561 rzgrp 21562 tgioo3 24722 recvs 25074 retopn 25307 recms 25308 reust 25309 rrxcph 25320 rrxdsfi 25339 reefgim 26388 amgmlem 26928 nn0omnd 33316 nn0archi 33319 xrge0slmod 33320 ccfldextrr 33680 ccfldsrarelvec 33705 ccfldextdgrr 33706 rezh 34003 rrhcn 34031 rerrext 34043 cnrrext 34044 qqtopn 34045 bj-rveccmod 37367 amgmwlem 49927 |
| Copyright terms: Public domain | W3C validator |