![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 21639 | . 2 class ℝfld | |
2 | ccnfld 21381 | . . 3 class ℂfld | |
3 | cr 11151 | . . 3 class ℝ | |
4 | cress 17273 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7430 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1536 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 21641 remulg 21642 resubdrg 21643 resubgval 21644 replusg 21645 remulr 21646 re0g 21647 re1r 21648 rele2 21649 relt 21650 reds 21651 redvr 21652 retos 21653 refld 21654 refldcj 21655 regsumsupp 21657 rzgrp 21658 tgioo3 24840 recvs 25192 recvsOLD 25193 retopn 25426 recms 25427 reust 25428 rrxcph 25439 rrxdsfi 25458 reefgim 26508 amgmlem 27047 nn0omnd 33352 nn0archi 33354 xrge0slmod 33355 ccfldextrr 33675 ccfldsrarelvec 33695 ccfldextdgrr 33696 rezh 33931 rrhcn 33959 rerrext 33971 cnrrext 33972 qqtopn 33973 bj-rveccmod 37284 amgmwlem 49032 |
Copyright terms: Public domain | W3C validator |