![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version |
Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crefld 21645 | . 2 class ℝfld | |
2 | ccnfld 21387 | . . 3 class ℂfld | |
3 | cr 11183 | . . 3 class ℝ | |
4 | cress 17287 | . . 3 class ↾s | |
5 | 2, 3, 4 | co 7448 | . 2 class (ℂfld ↾s ℝ) |
6 | 1, 5 | wceq 1537 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
Colors of variables: wff setvar class |
This definition is referenced by: rebase 21647 remulg 21648 resubdrg 21649 resubgval 21650 replusg 21651 remulr 21652 re0g 21653 re1r 21654 rele2 21655 relt 21656 reds 21657 redvr 21658 retos 21659 refld 21660 refldcj 21661 regsumsupp 21663 rzgrp 21664 tgioo3 24846 recvs 25198 recvsOLD 25199 retopn 25432 recms 25433 reust 25434 rrxcph 25445 rrxdsfi 25464 reefgim 26512 amgmlem 27051 nn0omnd 33338 nn0archi 33340 xrge0slmod 33341 ccfldextrr 33661 ccfldsrarelvec 33681 ccfldextdgrr 33682 rezh 33917 rrhcn 33943 rerrext 33955 cnrrext 33956 qqtopn 33957 bj-rveccmod 37268 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |