| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-refld | Structured version Visualization version GIF version | ||
| Description: The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-refld | ⊢ ℝfld = (ℂfld ↾s ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crefld 21539 | . 2 class ℝfld | |
| 2 | ccnfld 21289 | . . 3 class ℂfld | |
| 3 | cr 11002 | . . 3 class ℝ | |
| 4 | cress 17138 | . . 3 class ↾s | |
| 5 | 2, 3, 4 | co 7346 | . 2 class (ℂfld ↾s ℝ) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℝfld = (ℂfld ↾s ℝ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rebase 21541 remulg 21542 resubdrg 21543 resubgval 21544 replusg 21545 remulr 21546 re0g 21547 re1r 21548 rele2 21549 relt 21550 reds 21551 redvr 21552 retos 21553 refld 21554 refldcj 21555 regsumsupp 21557 rzgrp 21558 tgioo3 24719 recvs 25071 retopn 25304 recms 25305 reust 25306 rrxcph 25317 rrxdsfi 25336 reefgim 26385 amgmlem 26925 nn0omnd 33304 nn0archi 33307 xrge0slmod 33308 ccfldextrr 33654 ccfldsrarelvec 33679 ccfldextdgrr 33680 rezh 33977 rrhcn 34005 rerrext 34017 cnrrext 34018 qqtopn 34019 bj-rveccmod 37335 amgmwlem 49833 |
| Copyright terms: Public domain | W3C validator |