| Step | Hyp | Ref
| Expression |
| 1 | | cnring 21370 |
. . . . 5
⊢
ℂfld ∈ Ring |
| 2 | | ax-resscn 11195 |
. . . . 5
⊢ ℝ
⊆ ℂ |
| 3 | | eqidd 2735 |
. . . . . . 7
⊢ (⊤
→ ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘ℝ)) |
| 4 | 3 | mptru 1546 |
. . . . . 6
⊢
((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘ℝ) |
| 5 | | cnfldbas 21335 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
| 6 | 4, 5 | sraring 21160 |
. . . . 5
⊢
((ℂfld ∈ Ring ∧ ℝ ⊆ ℂ)
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
Ring) |
| 7 | 1, 2, 6 | mp2an 692 |
. . . 4
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
Ring |
| 8 | | ringgrp 20208 |
. . . 4
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ Ring
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
Grp) |
| 9 | 7, 8 | ax-mp 5 |
. . 3
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
Grp |
| 10 | | refld 21604 |
. . . . . 6
⊢
ℝfld ∈ Field |
| 11 | | isfld 20713 |
. . . . . 6
⊢
(ℝfld ∈ Field ↔ (ℝfld ∈
DivRing ∧ ℝfld ∈ CRing)) |
| 12 | 10, 11 | mpbi 230 |
. . . . 5
⊢
(ℝfld ∈ DivRing ∧ ℝfld ∈
CRing) |
| 13 | 12 | simpli 483 |
. . . 4
⊢
ℝfld ∈ DivRing |
| 14 | | drngring 20709 |
. . . 4
⊢
(ℝfld ∈ DivRing → ℝfld
∈ Ring) |
| 15 | 13, 14 | ax-mp 5 |
. . 3
⊢
ℝfld ∈ Ring |
| 16 | | simpr1 1194 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈
ℝ) |
| 17 | 16 | recnd 11272 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈
ℂ) |
| 18 | | simpr3 1196 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈
ℂ) |
| 19 | 17, 18 | mulcld 11264 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · 𝑦) ∈ ℂ) |
| 20 | | simpr2 1195 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈
ℂ) |
| 21 | 17, 18, 20 | adddid 11268 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥))) |
| 22 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈
ℝ) |
| 23 | 22 | recnd 11272 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈
ℂ) |
| 24 | 23, 17, 18 | adddird 11269 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
| 25 | 19, 21, 24 | 3jca 1128 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
| 26 | 23, 17, 18 | mulassd 11267 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦))) |
| 27 | 18 | mullidd 11262 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (1
· 𝑦) = 𝑦) |
| 28 | 25, 26, 27 | jca32 515 |
. . . . 5
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))) |
| 29 | 28 | ralrimivvva 3192 |
. . . 4
⊢ (𝑎 ∈ ℝ →
∀𝑏 ∈ ℝ
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℂ
(((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))) |
| 30 | 29 | rgen 3052 |
. . 3
⊢
∀𝑎 ∈
ℝ ∀𝑏 ∈
ℝ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)) |
| 31 | 2, 5 | sseqtri 4014 |
. . . . . . . 8
⊢ ℝ
⊆ (Base‘ℂfld) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℝ ⊆ (Base‘ℂfld)) |
| 33 | 3, 32 | srabase 21149 |
. . . . . 6
⊢ (⊤
→ (Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ))) |
| 34 | 33 | mptru 1546 |
. . . . 5
⊢
(Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ)) |
| 35 | 5, 34 | eqtri 2757 |
. . . 4
⊢ ℂ =
(Base‘((subringAlg
‘ℂfld)‘ℝ)) |
| 36 | | cnfldadd 21337 |
. . . . 5
⊢ + =
(+g‘ℂfld) |
| 37 | 3, 32 | sraaddg 21150 |
. . . . . 6
⊢ (⊤
→ (+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ))) |
| 38 | 37 | mptru 1546 |
. . . . 5
⊢
(+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
| 39 | 36, 38 | eqtri 2757 |
. . . 4
⊢ + =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
| 40 | | cnfldmul 21339 |
. . . . 5
⊢ ·
= (.r‘ℂfld) |
| 41 | 3, 32 | sravsca 21154 |
. . . . . 6
⊢ (⊤
→ (.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ))) |
| 42 | 41 | mptru 1546 |
. . . . 5
⊢
(.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
| 43 | 40, 42 | eqtri 2757 |
. . . 4
⊢ ·
= ( ·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
| 44 | | df-refld 21590 |
. . . . 5
⊢
ℝfld = (ℂfld ↾s
ℝ) |
| 45 | 3, 32 | srasca 21152 |
. . . . . 6
⊢ (⊤
→ (ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ))) |
| 46 | 45 | mptru 1546 |
. . . . 5
⊢
(ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
| 47 | 44, 46 | eqtri 2757 |
. . . 4
⊢
ℝfld = (Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
| 48 | | rebase 21591 |
. . . 4
⊢ ℝ =
(Base‘ℝfld) |
| 49 | | replusg 21595 |
. . . 4
⊢ + =
(+g‘ℝfld) |
| 50 | | remulr 21596 |
. . . 4
⊢ ·
= (.r‘ℝfld) |
| 51 | | re1r 21598 |
. . . 4
⊢ 1 =
(1r‘ℝfld) |
| 52 | 35, 39, 43, 47, 48, 49, 50, 51 | islmod 20835 |
. . 3
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ Grp
∧ ℝfld ∈ Ring ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))) |
| 53 | 9, 15, 30, 52 | mpbir3an 1341 |
. 2
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LMod |
| 54 | 47 | islvec 21076 |
. 2
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
∧ ℝfld ∈ DivRing)) |
| 55 | 53, 13, 54 | mpbir2an 711 |
1
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LVec |