Step | Hyp | Ref
| Expression |
1 | | cnring 20620 |
. . . . 5
⊢
ℂfld ∈ Ring |
2 | | ax-resscn 10928 |
. . . . 5
⊢ ℝ
⊆ ℂ |
3 | | eqidd 2739 |
. . . . . . 7
⊢ (⊤
→ ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘ℝ)) |
4 | 3 | mptru 1546 |
. . . . . 6
⊢
((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg
‘ℂfld)‘ℝ) |
5 | | cnfldbas 20601 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
6 | 4, 5 | sraring 31672 |
. . . . 5
⊢
((ℂfld ∈ Ring ∧ ℝ ⊆ ℂ)
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
Ring) |
7 | 1, 2, 6 | mp2an 689 |
. . . 4
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
Ring |
8 | | ringgrp 19788 |
. . . 4
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ Ring
→ ((subringAlg ‘ℂfld)‘ℝ) ∈
Grp) |
9 | 7, 8 | ax-mp 5 |
. . 3
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
Grp |
10 | | refld 20824 |
. . . . . 6
⊢
ℝfld ∈ Field |
11 | | isfld 20000 |
. . . . . 6
⊢
(ℝfld ∈ Field ↔ (ℝfld ∈
DivRing ∧ ℝfld ∈ CRing)) |
12 | 10, 11 | mpbi 229 |
. . . . 5
⊢
(ℝfld ∈ DivRing ∧ ℝfld ∈
CRing) |
13 | 12 | simpli 484 |
. . . 4
⊢
ℝfld ∈ DivRing |
14 | | drngring 19998 |
. . . 4
⊢
(ℝfld ∈ DivRing → ℝfld
∈ Ring) |
15 | 13, 14 | ax-mp 5 |
. . 3
⊢
ℝfld ∈ Ring |
16 | | simpr1 1193 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈
ℝ) |
17 | 16 | recnd 11003 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈
ℂ) |
18 | | simpr3 1195 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈
ℂ) |
19 | 17, 18 | mulcld 10995 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · 𝑦) ∈ ℂ) |
20 | | simpr2 1194 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈
ℂ) |
21 | 17, 18, 20 | adddid 10999 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥))) |
22 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈
ℝ) |
23 | 22 | recnd 11003 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈
ℂ) |
24 | 23, 17, 18 | adddird 11000 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) |
25 | 19, 21, 24 | 3jca 1127 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))) |
26 | 23, 17, 18 | mulassd 10998 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦))) |
27 | 18 | mulid2d 10993 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (1
· 𝑦) = 𝑦) |
28 | 25, 26, 27 | jca32 516 |
. . . . 5
⊢ ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))) |
29 | 28 | ralrimivvva 3127 |
. . . 4
⊢ (𝑎 ∈ ℝ →
∀𝑏 ∈ ℝ
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℂ
(((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))) |
30 | 29 | rgen 3074 |
. . 3
⊢
∀𝑎 ∈
ℝ ∀𝑏 ∈
ℝ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)) |
31 | 2, 5 | sseqtri 3957 |
. . . . . . . 8
⊢ ℝ
⊆ (Base‘ℂfld) |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℝ ⊆ (Base‘ℂfld)) |
33 | 3, 32 | srabase 20441 |
. . . . . 6
⊢ (⊤
→ (Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ))) |
34 | 33 | mptru 1546 |
. . . . 5
⊢
(Base‘ℂfld) = (Base‘((subringAlg
‘ℂfld)‘ℝ)) |
35 | 5, 34 | eqtri 2766 |
. . . 4
⊢ ℂ =
(Base‘((subringAlg
‘ℂfld)‘ℝ)) |
36 | | cnfldadd 20602 |
. . . . 5
⊢ + =
(+g‘ℂfld) |
37 | 3, 32 | sraaddg 20443 |
. . . . . 6
⊢ (⊤
→ (+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ))) |
38 | 37 | mptru 1546 |
. . . . 5
⊢
(+g‘ℂfld) =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
39 | 36, 38 | eqtri 2766 |
. . . 4
⊢ + =
(+g‘((subringAlg
‘ℂfld)‘ℝ)) |
40 | | cnfldmul 20603 |
. . . . 5
⊢ ·
= (.r‘ℂfld) |
41 | 3, 32 | sravsca 20449 |
. . . . . 6
⊢ (⊤
→ (.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ))) |
42 | 41 | mptru 1546 |
. . . . 5
⊢
(.r‘ℂfld) = (
·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
43 | 40, 42 | eqtri 2766 |
. . . 4
⊢ ·
= ( ·𝑠 ‘((subringAlg
‘ℂfld)‘ℝ)) |
44 | | df-refld 20810 |
. . . . 5
⊢
ℝfld = (ℂfld ↾s
ℝ) |
45 | 3, 32 | srasca 20447 |
. . . . . 6
⊢ (⊤
→ (ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ))) |
46 | 45 | mptru 1546 |
. . . . 5
⊢
(ℂfld ↾s ℝ) =
(Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
47 | 44, 46 | eqtri 2766 |
. . . 4
⊢
ℝfld = (Scalar‘((subringAlg
‘ℂfld)‘ℝ)) |
48 | | rebase 20811 |
. . . 4
⊢ ℝ =
(Base‘ℝfld) |
49 | | replusg 20815 |
. . . 4
⊢ + =
(+g‘ℝfld) |
50 | | remulr 20816 |
. . . 4
⊢ ·
= (.r‘ℝfld) |
51 | | re1r 20818 |
. . . 4
⊢ 1 =
(1r‘ℝfld) |
52 | 35, 39, 43, 47, 48, 49, 50, 51 | islmod 20127 |
. . 3
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ Grp
∧ ℝfld ∈ Ring ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))) |
53 | 9, 15, 30, 52 | mpbir3an 1340 |
. 2
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LMod |
54 | 47 | islvec 20366 |
. 2
⊢
(((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
∧ ℝfld ∈ DivRing)) |
55 | 53, 13, 54 | mpbir2an 708 |
1
⊢
((subringAlg ‘ℂfld)‘ℝ) ∈
LVec |