Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldsrarelvec Structured version   Visualization version   GIF version

Theorem ccfldsrarelvec 31063
Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldsrarelvec ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec

Proof of Theorem ccfldsrarelvec
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20539 . . . . 5 fld ∈ Ring
2 ax-resscn 10568 . . . . 5 ℝ ⊆ ℂ
3 eqidd 2821 . . . . . . 7 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
43mptru 1544 . . . . . 6 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)
5 cnfldbas 20521 . . . . . 6 ℂ = (Base‘ℂfld)
64, 5sraring 30994 . . . . 5 ((ℂfld ∈ Ring ∧ ℝ ⊆ ℂ) → ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring)
71, 2, 6mp2an 690 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring
8 ringgrp 19277 . . . 4 (((subringAlg ‘ℂfld)‘ℝ) ∈ Ring → ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp)
97, 8ax-mp 5 . . 3 ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp
10 refld 20735 . . . . . 6 fld ∈ Field
11 isfld 19483 . . . . . 6 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1210, 11mpbi 232 . . . . 5 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
1312simpli 486 . . . 4 fld ∈ DivRing
14 drngring 19481 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
1513, 14ax-mp 5 . . 3 fld ∈ Ring
16 simpr1 1190 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℝ)
1716recnd 10643 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℂ)
18 simpr3 1192 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
1917, 18mulcld 10635 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · 𝑦) ∈ ℂ)
20 simpr2 1191 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
2117, 18, 20adddid 10639 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)))
22 simpl 485 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℝ)
2322recnd 10643 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℂ)
2423, 17, 18adddird 10640 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))
2519, 21, 243jca 1124 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))
2623, 17, 18mulassd 10638 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)))
2718mulid2d 10633 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (1 · 𝑦) = 𝑦)
2825, 26, 27jca32 518 . . . . 5 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
2928ralrimivvva 3179 . . . 4 (𝑎 ∈ ℝ → ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
3029rgen 3135 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))
312, 5sseqtri 3978 . . . . . . . 8 ℝ ⊆ (Base‘ℂfld)
3231a1i 11 . . . . . . 7 (⊤ → ℝ ⊆ (Base‘ℂfld))
333, 32srabase 19922 . . . . . 6 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
3433mptru 1544 . . . . 5 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
355, 34eqtri 2843 . . . 4 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
36 cnfldadd 20522 . . . . 5 + = (+g‘ℂfld)
373, 32sraaddg 19923 . . . . . 6 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
3837mptru 1544 . . . . 5 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
3936, 38eqtri 2843 . . . 4 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
40 cnfldmul 20523 . . . . 5 · = (.r‘ℂfld)
413, 32sravsca 19926 . . . . . 6 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4241mptru 1544 . . . . 5 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4340, 42eqtri 2843 . . . 4 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
44 df-refld 20721 . . . . 5 fld = (ℂflds ℝ)
453, 32srasca 19925 . . . . . 6 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
4645mptru 1544 . . . . 5 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
4744, 46eqtri 2843 . . . 4 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
48 rebase 20722 . . . 4 ℝ = (Base‘ℝfld)
49 replusg 20726 . . . 4 + = (+g‘ℝfld)
50 remulr 20727 . . . 4 · = (.r‘ℝfld)
51 re1r 20729 . . . 4 1 = (1r‘ℝfld)
5235, 39, 43, 47, 48, 49, 50, 51islmod 19610 . . 3 (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ Grp ∧ ℝfld ∈ Ring ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))))
539, 15, 30, 52mpbir3an 1337 . 2 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
5447islvec 19848 . 2 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ ℝfld ∈ DivRing))
5553, 13, 54mpbir2an 709 1 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wral 3125  wss 3909  cfv 6327  (class class class)co 7129  cc 10509  cr 10510  1c1 10512   + caddc 10514   · cmul 10516  Basecbs 16458  s cress 16459  +gcplusg 16540  .rcmulr 16541  Scalarcsca 16543   ·𝑠 cvsca 16544  Grpcgrp 18078  Ringcrg 19272  CRingccrg 19273  DivRingcdr 19474  Fieldcfield 19475  LModclmod 19606  LVecclvec 19846  subringAlg csra 19912  fldccnfld 20517  fldcrefld 20720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-addf 10590  ax-mulf 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-tpos 7866  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-5 11678  df-6 11679  df-7 11680  df-8 11681  df-9 11682  df-n0 11873  df-z 11957  df-dec 12074  df-uz 12219  df-fz 12873  df-struct 16460  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-ress 16466  df-plusg 16553  df-mulr 16554  df-starv 16555  df-sca 16556  df-vsca 16557  df-ip 16558  df-tset 16559  df-ple 16560  df-ds 16562  df-unif 16563  df-0g 16690  df-mgm 17827  df-sgrp 17876  df-mnd 17887  df-grp 18081  df-minusg 18082  df-subg 18251  df-cmn 18883  df-mgp 19215  df-ur 19227  df-ring 19274  df-cring 19275  df-oppr 19348  df-dvdsr 19366  df-unit 19367  df-invr 19397  df-dvr 19408  df-drng 19476  df-field 19477  df-subrg 19505  df-lmod 19608  df-lvec 19847  df-sra 19916  df-cnfld 20518  df-refld 20721
This theorem is referenced by:  ccfldextdgrr  31064
  Copyright terms: Public domain W3C validator