Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccfldsrarelvec Structured version   Visualization version   GIF version

Theorem ccfldsrarelvec 33705
Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.)
Assertion
Ref Expression
ccfldsrarelvec ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec

Proof of Theorem ccfldsrarelvec
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 21329 . . . . 5 fld ∈ Ring
2 ax-resscn 11070 . . . . 5 ℝ ⊆ ℂ
3 eqidd 2734 . . . . . . 7 (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ))
43mptru 1548 . . . . . 6 ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)
5 cnfldbas 21297 . . . . . 6 ℂ = (Base‘ℂfld)
64, 5sraring 21122 . . . . 5 ((ℂfld ∈ Ring ∧ ℝ ⊆ ℂ) → ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring)
71, 2, 6mp2an 692 . . . 4 ((subringAlg ‘ℂfld)‘ℝ) ∈ Ring
8 ringgrp 20158 . . . 4 (((subringAlg ‘ℂfld)‘ℝ) ∈ Ring → ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp)
97, 8ax-mp 5 . . 3 ((subringAlg ‘ℂfld)‘ℝ) ∈ Grp
10 refld 21558 . . . . . 6 fld ∈ Field
11 isfld 20657 . . . . . 6 (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing))
1210, 11mpbi 230 . . . . 5 (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)
1312simpli 483 . . . 4 fld ∈ DivRing
14 drngring 20653 . . . 4 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
1513, 14ax-mp 5 . . 3 fld ∈ Ring
16 simpr1 1195 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℝ)
1716recnd 11147 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑏 ∈ ℂ)
18 simpr3 1197 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
1917, 18mulcld 11139 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · 𝑦) ∈ ℂ)
20 simpr2 1196 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
2117, 18, 20adddid 11143 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)))
22 simpl 482 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℝ)
2322recnd 11147 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑎 ∈ ℂ)
2423, 17, 18adddird 11144 . . . . . . 7 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))
2519, 21, 243jca 1128 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))
2623, 17, 18mulassd 11142 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)))
2718mullidd 11137 . . . . . 6 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (1 · 𝑦) = 𝑦)
2825, 26, 27jca32 515 . . . . 5 ((𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
2928ralrimivvva 3179 . . . 4 (𝑎 ∈ ℝ → ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦)))
3029rgen 3050 . . 3 𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))
312, 5sseqtri 3979 . . . . . . . 8 ℝ ⊆ (Base‘ℂfld)
3231a1i 11 . . . . . . 7 (⊤ → ℝ ⊆ (Base‘ℂfld))
333, 32srabase 21113 . . . . . 6 (⊤ → (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ)))
3433mptru 1548 . . . . 5 (Base‘ℂfld) = (Base‘((subringAlg ‘ℂfld)‘ℝ))
355, 34eqtri 2756 . . . 4 ℂ = (Base‘((subringAlg ‘ℂfld)‘ℝ))
36 cnfldadd 21299 . . . . 5 + = (+g‘ℂfld)
373, 32sraaddg 21114 . . . . . 6 (⊤ → (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ)))
3837mptru 1548 . . . . 5 (+g‘ℂfld) = (+g‘((subringAlg ‘ℂfld)‘ℝ))
3936, 38eqtri 2756 . . . 4 + = (+g‘((subringAlg ‘ℂfld)‘ℝ))
40 cnfldmul 21301 . . . . 5 · = (.r‘ℂfld)
413, 32sravsca 21117 . . . . . 6 (⊤ → (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ)))
4241mptru 1548 . . . . 5 (.r‘ℂfld) = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
4340, 42eqtri 2756 . . . 4 · = ( ·𝑠 ‘((subringAlg ‘ℂfld)‘ℝ))
44 df-refld 21544 . . . . 5 fld = (ℂflds ℝ)
453, 32srasca 21116 . . . . . 6 (⊤ → (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ)))
4645mptru 1548 . . . . 5 (ℂflds ℝ) = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
4744, 46eqtri 2756 . . . 4 fld = (Scalar‘((subringAlg ‘ℂfld)‘ℝ))
48 rebase 21545 . . . 4 ℝ = (Base‘ℝfld)
49 replusg 21549 . . . 4 + = (+g‘ℝfld)
50 remulr 21550 . . . 4 · = (.r‘ℝfld)
51 re1r 21552 . . . 4 1 = (1r‘ℝfld)
5235, 39, 43, 47, 48, 49, 50, 51islmod 20799 . . 3 (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ Grp ∧ ℝfld ∈ Ring ∧ ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝑏 · 𝑦) ∈ ℂ ∧ (𝑏 · (𝑦 + 𝑥)) = ((𝑏 · 𝑦) + (𝑏 · 𝑥)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))) ∧ (((𝑎 · 𝑏) · 𝑦) = (𝑎 · (𝑏 · 𝑦)) ∧ (1 · 𝑦) = 𝑦))))
539, 15, 30, 52mpbir3an 1342 . 2 ((subringAlg ‘ℂfld)‘ℝ) ∈ LMod
5447islvec 21040 . 2 (((subringAlg ‘ℂfld)‘ℝ) ∈ LVec ↔ (((subringAlg ‘ℂfld)‘ℝ) ∈ LMod ∧ ℝfld ∈ DivRing))
5553, 13, 54mpbir2an 711 1 ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  1c1 11014   + caddc 11016   · cmul 11018  Basecbs 17122  s cress 17143  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  Grpcgrp 18848  Ringcrg 20153  CRingccrg 20154  DivRingcdr 20646  Fieldcfield 20647  LModclmod 20795  LVecclvec 21038  subringAlg csra 21107  fldccnfld 21293  fldcrefld 21543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-subrng 20463  df-subrg 20487  df-drng 20648  df-field 20649  df-lmod 20797  df-lvec 21039  df-sra 21109  df-cnfld 21294  df-refld 21544
This theorem is referenced by:  ccfldextdgrr  33706
  Copyright terms: Public domain W3C validator