![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rezh | Structured version Visualization version GIF version |
Description: The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
rezh | ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnnrg 24817 | . . . . 5 ⊢ ℂfld ∈ NrmRing | |
2 | resubdrg 21644 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
3 | 2 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
4 | df-refld 21641 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
5 | 4 | subrgnrg 24710 | . . . . 5 ⊢ ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing) |
6 | 1, 3, 5 | mp2an 692 | . . . 4 ⊢ ℝfld ∈ NrmRing |
7 | eqid 2735 | . . . . 5 ⊢ (ℤMod‘ℝfld) = (ℤMod‘ℝfld) | |
8 | 7 | zhmnrg 33928 | . . . 4 ⊢ (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing) |
9 | nrgngp 24699 | . . . 4 ⊢ ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp) | |
10 | 6, 8, 9 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ NrmGrp |
11 | nrgring 24700 | . . . . 5 ⊢ (ℝfld ∈ NrmRing → ℝfld ∈ Ring) | |
12 | ringabl 20295 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Abel) | |
13 | 6, 11, 12 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ Abel |
14 | 7 | zlmlmod 21555 | . . . 4 ⊢ (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod) |
15 | 13, 14 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ LMod |
16 | zringnrg 24824 | . . 3 ⊢ ℤring ∈ NrmRing | |
17 | 10, 15, 16 | 3pm3.2i 1338 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
18 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ) | |
19 | 18 | zcnd 12721 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ) |
20 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
21 | 20 | recnd 11287 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
22 | 19, 21 | absmuld 15490 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
23 | subrgsubg 20594 | . . . . . . . . 9 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
24 | 3, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ℝ ∈ (SubGrp‘ℂfld) |
25 | eqid 2735 | . . . . . . . . 9 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
26 | eqid 2735 | . . . . . . . . . . 11 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
27 | 7, 26 | zlmvsca 21554 | . . . . . . . . . 10 ⊢ (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld)) |
28 | 27 | eqcomi 2744 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld) |
29 | 25, 4, 28 | subgmulg 19171 | . . . . . . . 8 ⊢ ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
30 | 24, 29 | mp3an1 1447 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
31 | cnfldmulg 21434 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
32 | 21, 31 | syldan 591 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) |
33 | 30, 32 | eqtr3d 2777 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥)) |
34 | 33 | fveq2d 6911 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥))) |
35 | zre 12615 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
36 | remulcl 11238 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ) | |
37 | fvres 6926 | . . . . . . 7 ⊢ ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) | |
38 | 36, 37 | syl 17 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
39 | 35, 38 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
40 | 34, 39 | eqtrd 2775 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥))) |
41 | fvres 6926 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
42 | fvres 6926 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥)) | |
43 | 41, 42 | oveqan12d 7450 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
44 | 22, 40, 43 | 3eqtr4d 2785 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))) |
45 | 44 | rgen2 3197 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) |
46 | rebase 21642 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
47 | 7, 46 | zlmbas 21547 | . . 3 ⊢ ℝ = (Base‘(ℤMod‘ℝfld)) |
48 | recusp 25430 | . . . . 5 ⊢ ℝfld ∈ CUnifSp | |
49 | 48 | elexi 3501 | . . . 4 ⊢ ℝfld ∈ V |
50 | cnring 21421 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
51 | ringmnd 20261 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
52 | 50, 51 | ax-mp 5 | . . . . . 6 ⊢ ℂfld ∈ Mnd |
53 | 0re 11261 | . . . . . 6 ⊢ 0 ∈ ℝ | |
54 | ax-resscn 11210 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
55 | cnfldbas 21386 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
56 | cnfld0 21423 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
57 | cnfldnm 24815 | . . . . . . 7 ⊢ abs = (norm‘ℂfld) | |
58 | 4, 55, 56, 57 | ressnm 32934 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld)) |
59 | 52, 53, 54, 58 | mp3an 1460 | . . . . 5 ⊢ (abs ↾ ℝ) = (norm‘ℝfld) |
60 | 7, 59 | zlmnm 33927 | . . . 4 ⊢ (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))) |
61 | 49, 60 | ax-mp 5 | . . 3 ⊢ (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)) |
62 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld)) | |
63 | 7 | zlmsca 21553 | . . . 4 ⊢ (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld))) |
64 | 49, 63 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℝfld)) |
65 | zringbas 21482 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
66 | zringnm 33919 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
67 | 66 | eqcomi 2744 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
68 | 47, 61, 62, 64, 65, 67 | isnlm 24712 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))) |
69 | 17, 45, 68 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 · cmul 11158 ℤcz 12611 abscabs 15270 Scalarcsca 17301 ·𝑠 cvsca 17302 Mndcmnd 18760 .gcmg 19098 SubGrpcsubg 19151 Abelcabl 19814 Ringcrg 20251 SubRingcsubrg 20586 DivRingcdr 20746 LModclmod 20875 ℂfldccnfld 21382 ℤringczring 21475 ℤModczlm 21529 ℝfldcrefld 21640 CUnifSpccusp 24322 normcnm 24605 NrmGrpcngp 24606 NrmRingcnrg 24608 NrmModcnlm 24609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-subrng 20563 df-subrg 20587 df-drng 20748 df-abv 20827 df-lmod 20877 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-metu 21381 df-cnfld 21383 df-zring 21476 df-zlm 21533 df-refld 21641 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-flim 23963 df-fcls 23965 df-ust 24225 df-utop 24256 df-uss 24281 df-usp 24282 df-cfilu 24312 df-cusp 24323 df-xms 24346 df-ms 24347 df-tms 24348 df-nm 24611 df-ngp 24612 df-nrg 24614 df-nlm 24615 df-cncf 24918 df-cfil 25303 df-cmet 25305 df-cms 25383 |
This theorem is referenced by: rerrext 33972 |
Copyright terms: Public domain | W3C validator |