Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rezh Structured version   Visualization version   GIF version

Theorem rezh 30462
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
rezh (ℤMod‘ℝfld) ∈ NrmMod

Proof of Theorem rezh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 22863 . . . . 5 fld ∈ NrmRing
2 resubdrg 20228 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 476 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 20225 . . . . . 6 fld = (ℂflds ℝ)
54subrgnrg 22756 . . . . 5 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 683 . . . 4 fld ∈ NrmRing
7 eqid 2765 . . . . 5 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
87zhmnrg 30458 . . . 4 (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing)
9 nrgngp 22745 . . . 4 ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp)
106, 8, 9mp2b 10 . . 3 (ℤMod‘ℝfld) ∈ NrmGrp
11 nrgring 22746 . . . . 5 (ℝfld ∈ NrmRing → ℝfld ∈ Ring)
12 ringabl 18847 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Abel)
136, 11, 12mp2b 10 . . . 4 fld ∈ Abel
147zlmlmod 20144 . . . 4 (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod)
1513, 14mpbi 221 . . 3 (ℤMod‘ℝfld) ∈ LMod
16 zringnrg 22870 . . 3 ring ∈ NrmRing
1710, 15, 163pm3.2i 1438 . 2 ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing)
18 simpl 474 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ)
1918zcnd 11730 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ)
20 simpr 477 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2120recnd 10322 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
2219, 21absmuld 14478 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
23 subrgsubg 19055 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
243, 23ax-mp 5 . . . . . . . 8 ℝ ∈ (SubGrp‘ℂfld)
25 eqid 2765 . . . . . . . . 9 (.g‘ℂfld) = (.g‘ℂfld)
26 eqid 2765 . . . . . . . . . . 11 (.g‘ℝfld) = (.g‘ℝfld)
277, 26zlmvsca 20143 . . . . . . . . . 10 (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld))
2827eqcomi 2774 . . . . . . . . 9 ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld)
2925, 4, 28subgmulg 17872 . . . . . . . 8 ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
3024, 29mp3an1 1572 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
31 cnfldmulg 20051 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3221, 31syldan 585 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3330, 32eqtr3d 2801 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥))
3433fveq2d 6379 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥)))
35 zre 11628 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
36 remulcl 10274 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ)
37 fvres 6394 . . . . . . 7 ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3836, 37syl 17 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3935, 38sylan 575 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
4034, 39eqtrd 2799 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥)))
41 fvres 6394 . . . . 5 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
42 fvres 6394 . . . . 5 (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥))
4341, 42oveqan12d 6861 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
4422, 40, 433eqtr4d 2809 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))
4544rgen2 3122 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))
46 rebase 20226 . . . 4 ℝ = (Base‘ℝfld)
477, 46zlmbas 20139 . . 3 ℝ = (Base‘(ℤMod‘ℝfld))
48 recusp 23459 . . . . 5 fld ∈ CUnifSp
4948elexi 3366 . . . 4 fld ∈ V
50 cnring 20041 . . . . . . 7 fld ∈ Ring
51 ringmnd 18823 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5250, 51ax-mp 5 . . . . . 6 fld ∈ Mnd
53 0re 10295 . . . . . 6 0 ∈ ℝ
54 ax-resscn 10246 . . . . . 6 ℝ ⊆ ℂ
55 cnfldbas 20023 . . . . . . 7 ℂ = (Base‘ℂfld)
56 cnfld0 20043 . . . . . . 7 0 = (0g‘ℂfld)
57 cnfldnm 22861 . . . . . . 7 abs = (norm‘ℂfld)
584, 55, 56, 57ressnm 30098 . . . . . 6 ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld))
5952, 53, 54, 58mp3an 1585 . . . . 5 (abs ↾ ℝ) = (norm‘ℝfld)
607, 59zlmnm 30457 . . . 4 (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)))
6149, 60ax-mp 5 . . 3 (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))
62 eqid 2765 . . 3 ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld))
637zlmsca 20142 . . . 4 (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld)))
6449, 63ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℝfld))
65 zringbas 20097 . . 3 ℤ = (Base‘ℤring)
66 zringnm 30451 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
6766eqcomi 2774 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
6847, 61, 62, 64, 65, 67isnlm 22758 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))))
6917, 45, 68mpbir2an 702 1 (ℤMod‘ℝfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3732  cres 5279  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189   · cmul 10194  cz 11624  abscabs 14259  Scalarcsca 16217   ·𝑠 cvsca 16218  Mndcmnd 17560  .gcmg 17807  SubGrpcsubg 17852  Abelcabl 18460  Ringcrg 18814  DivRingcdr 19016  SubRingcsubrg 19045  LModclmod 19132  fldccnfld 20019  ringzring 20091  ℤModczlm 20122  fldcrefld 20224  CUnifSpccusp 22380  normcnm 22660  NrmGrpcngp 22661  NrmRingcnrg 22663  NrmModcnlm 22664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-cntz 18013  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-drng 19018  df-subrg 19047  df-abv 19086  df-lmod 19134  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-metu 20018  df-cnfld 20020  df-zring 20092  df-zlm 20126  df-refld 20225  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-flim 22022  df-fcls 22024  df-ust 22283  df-utop 22314  df-uss 22339  df-usp 22340  df-cfilu 22370  df-cusp 22381  df-xms 22404  df-ms 22405  df-tms 22406  df-nm 22666  df-ngp 22667  df-nrg 22669  df-nlm 22670  df-cncf 22960  df-cfil 23332  df-cmet 23334  df-cms 23412
This theorem is referenced by:  rerrext  30500
  Copyright terms: Public domain W3C validator