Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rezh Structured version   Visualization version   GIF version

Theorem rezh 34054
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
rezh (ℤMod‘ℝfld) ∈ NrmMod

Proof of Theorem rezh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 24715 . . . . 5 fld ∈ NrmRing
2 resubdrg 21554 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 483 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 21551 . . . . . 6 fld = (ℂflds ℝ)
54subrgnrg 24608 . . . . 5 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 692 . . . 4 fld ∈ NrmRing
7 eqid 2733 . . . . 5 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
87zhmnrg 34050 . . . 4 (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing)
9 nrgngp 24597 . . . 4 ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp)
106, 8, 9mp2b 10 . . 3 (ℤMod‘ℝfld) ∈ NrmGrp
11 nrgring 24598 . . . . 5 (ℝfld ∈ NrmRing → ℝfld ∈ Ring)
12 ringabl 20207 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Abel)
136, 11, 12mp2b 10 . . . 4 fld ∈ Abel
147zlmlmod 21468 . . . 4 (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod)
1513, 14mpbi 230 . . 3 (ℤMod‘ℝfld) ∈ LMod
16 zringnrg 24723 . . 3 ring ∈ NrmRing
1710, 15, 163pm3.2i 1340 . 2 ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing)
18 simpl 482 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ)
1918zcnd 12588 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ)
20 simpr 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2120recnd 11151 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
2219, 21absmuld 15371 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
23 subrgsubg 20501 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
243, 23ax-mp 5 . . . . . . . 8 ℝ ∈ (SubGrp‘ℂfld)
25 eqid 2733 . . . . . . . . 9 (.g‘ℂfld) = (.g‘ℂfld)
26 eqid 2733 . . . . . . . . . . 11 (.g‘ℝfld) = (.g‘ℝfld)
277, 26zlmvsca 21467 . . . . . . . . . 10 (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld))
2827eqcomi 2742 . . . . . . . . 9 ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld)
2925, 4, 28subgmulg 19061 . . . . . . . 8 ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
3024, 29mp3an1 1450 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
31 cnfldmulg 21349 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3221, 31syldan 591 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3330, 32eqtr3d 2770 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥))
3433fveq2d 6835 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥)))
35 zre 12483 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
36 remulcl 11102 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ)
37 fvres 6850 . . . . . . 7 ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3836, 37syl 17 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3935, 38sylan 580 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
4034, 39eqtrd 2768 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥)))
41 fvres 6850 . . . . 5 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
42 fvres 6850 . . . . 5 (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥))
4341, 42oveqan12d 7374 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
4422, 40, 433eqtr4d 2778 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))
4544rgen2 3173 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))
46 rebase 21552 . . . 4 ℝ = (Base‘ℝfld)
477, 46zlmbas 21463 . . 3 ℝ = (Base‘(ℤMod‘ℝfld))
48 recusp 25329 . . . . 5 fld ∈ CUnifSp
4948elexi 3460 . . . 4 fld ∈ V
50 cnring 21336 . . . . . . 7 fld ∈ Ring
51 ringmnd 20169 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5250, 51ax-mp 5 . . . . . 6 fld ∈ Mnd
53 0re 11125 . . . . . 6 0 ∈ ℝ
54 ax-resscn 11074 . . . . . 6 ℝ ⊆ ℂ
55 cnfldbas 21304 . . . . . . 7 ℂ = (Base‘ℂfld)
56 cnfld0 21338 . . . . . . 7 0 = (0g‘ℂfld)
57 cnfldnm 24713 . . . . . . 7 abs = (norm‘ℂfld)
584, 55, 56, 57ressnm 32974 . . . . . 6 ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld))
5952, 53, 54, 58mp3an 1463 . . . . 5 (abs ↾ ℝ) = (norm‘ℝfld)
607, 59zlmnm 34049 . . . 4 (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)))
6149, 60ax-mp 5 . . 3 (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))
62 eqid 2733 . . 3 ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld))
637zlmsca 21466 . . . 4 (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld)))
6449, 63ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℝfld))
65 zringbas 21399 . . 3 ℤ = (Base‘ℤring)
66 zringnm 34043 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
6766eqcomi 2742 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
6847, 61, 62, 64, 65, 67isnlm 24610 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))))
6917, 45, 68mpbir2an 711 1 (ℤMod‘ℝfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cres 5623  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017   · cmul 11022  cz 12479  abscabs 15148  Scalarcsca 17171   ·𝑠 cvsca 17172  Mndcmnd 18650  .gcmg 18988  SubGrpcsubg 19041  Abelcabl 19701  Ringcrg 20159  SubRingcsubrg 20493  DivRingcdr 20653  LModclmod 20802  fldccnfld 21300  ringczring 21392  ℤModczlm 21446  fldcrefld 21550  CUnifSpccusp 24231  normcnm 24511  NrmGrpcngp 24512  NrmRingcnrg 24514  NrmModcnlm 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-abv 20733  df-lmod 20804  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-metu 21299  df-cnfld 21301  df-zring 21393  df-zlm 21450  df-refld 21551  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-flim 23874  df-fcls 23876  df-ust 24136  df-utop 24166  df-uss 24191  df-usp 24192  df-cfilu 24221  df-cusp 24232  df-xms 24255  df-ms 24256  df-tms 24257  df-nm 24517  df-ngp 24518  df-nrg 24520  df-nlm 24521  df-cncf 24818  df-cfil 25202  df-cmet 25204  df-cms 25282
This theorem is referenced by:  rerrext  34094
  Copyright terms: Public domain W3C validator