| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rezh | Structured version Visualization version GIF version | ||
| Description: The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| rezh | ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24690 | . . . . 5 ⊢ ℂfld ∈ NrmRing | |
| 2 | resubdrg 21540 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 3 | 2 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 4 | df-refld 21537 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 5 | 4 | subrgnrg 24583 | . . . . 5 ⊢ ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing) |
| 6 | 1, 3, 5 | mp2an 692 | . . . 4 ⊢ ℝfld ∈ NrmRing |
| 7 | eqid 2731 | . . . . 5 ⊢ (ℤMod‘ℝfld) = (ℤMod‘ℝfld) | |
| 8 | 7 | zhmnrg 33970 | . . . 4 ⊢ (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing) |
| 9 | nrgngp 24572 | . . . 4 ⊢ ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp) | |
| 10 | 6, 8, 9 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ NrmGrp |
| 11 | nrgring 24573 | . . . . 5 ⊢ (ℝfld ∈ NrmRing → ℝfld ∈ Ring) | |
| 12 | ringabl 20194 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Abel) | |
| 13 | 6, 11, 12 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ Abel |
| 14 | 7 | zlmlmod 21454 | . . . 4 ⊢ (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod) |
| 15 | 13, 14 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ LMod |
| 16 | zringnrg 24698 | . . 3 ⊢ ℤring ∈ NrmRing | |
| 17 | 10, 15, 16 | 3pm3.2i 1340 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
| 18 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ) | |
| 19 | 18 | zcnd 12573 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 21 | 20 | recnd 11135 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 22 | 19, 21 | absmuld 15359 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 23 | subrgsubg 20487 | . . . . . . . . 9 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 24 | 3, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ℝ ∈ (SubGrp‘ℂfld) |
| 25 | eqid 2731 | . . . . . . . . 9 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 26 | eqid 2731 | . . . . . . . . . . 11 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 27 | 7, 26 | zlmvsca 21453 | . . . . . . . . . 10 ⊢ (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld)) |
| 28 | 27 | eqcomi 2740 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld) |
| 29 | 25, 4, 28 | subgmulg 19048 | . . . . . . . 8 ⊢ ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 30 | 24, 29 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 31 | cnfldmulg 21335 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
| 32 | 21, 31 | syldan 591 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) |
| 33 | 30, 32 | eqtr3d 2768 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥)) |
| 34 | 33 | fveq2d 6821 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥))) |
| 35 | zre 12467 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 36 | remulcl 11086 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ) | |
| 37 | fvres 6836 | . . . . . . 7 ⊢ ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) | |
| 38 | 36, 37 | syl 17 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 39 | 35, 38 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 40 | 34, 39 | eqtrd 2766 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 41 | fvres 6836 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
| 42 | fvres 6836 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥)) | |
| 43 | 41, 42 | oveqan12d 7360 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 44 | 22, 40, 43 | 3eqtr4d 2776 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))) |
| 45 | 44 | rgen2 3172 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) |
| 46 | rebase 21538 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 47 | 7, 46 | zlmbas 21449 | . . 3 ⊢ ℝ = (Base‘(ℤMod‘ℝfld)) |
| 48 | recusp 25304 | . . . . 5 ⊢ ℝfld ∈ CUnifSp | |
| 49 | 48 | elexi 3459 | . . . 4 ⊢ ℝfld ∈ V |
| 50 | cnring 21322 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
| 51 | ringmnd 20156 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 52 | 50, 51 | ax-mp 5 | . . . . . 6 ⊢ ℂfld ∈ Mnd |
| 53 | 0re 11109 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 54 | ax-resscn 11058 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 55 | cnfldbas 21290 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 56 | cnfld0 21324 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 57 | cnfldnm 24688 | . . . . . . 7 ⊢ abs = (norm‘ℂfld) | |
| 58 | 4, 55, 56, 57 | ressnm 32937 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld)) |
| 59 | 52, 53, 54, 58 | mp3an 1463 | . . . . 5 ⊢ (abs ↾ ℝ) = (norm‘ℝfld) |
| 60 | 7, 59 | zlmnm 33969 | . . . 4 ⊢ (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))) |
| 61 | 49, 60 | ax-mp 5 | . . 3 ⊢ (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)) |
| 62 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld)) | |
| 63 | 7 | zlmsca 21452 | . . . 4 ⊢ (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld))) |
| 64 | 49, 63 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℝfld)) |
| 65 | zringbas 21385 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 66 | zringnm 33963 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
| 67 | 66 | eqcomi 2740 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
| 68 | 47, 61, 62, 64, 65, 67 | isnlm 24585 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))) |
| 69 | 17, 45, 68 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 · cmul 11006 ℤcz 12463 abscabs 15136 Scalarcsca 17159 ·𝑠 cvsca 17160 Mndcmnd 18637 .gcmg 18975 SubGrpcsubg 19028 Abelcabl 19688 Ringcrg 20146 SubRingcsubrg 20479 DivRingcdr 20639 LModclmod 20788 ℂfldccnfld 21286 ℤringczring 21378 ℤModczlm 21432 ℝfldcrefld 21536 CUnifSpccusp 24206 normcnm 24486 NrmGrpcngp 24487 NrmRingcnrg 24489 NrmModcnlm 24490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-subrng 20456 df-subrg 20480 df-drng 20641 df-abv 20719 df-lmod 20790 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-metu 21285 df-cnfld 21287 df-zring 21379 df-zlm 21436 df-refld 21537 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-flim 23849 df-fcls 23851 df-ust 24111 df-utop 24141 df-uss 24166 df-usp 24167 df-cfilu 24196 df-cusp 24207 df-xms 24230 df-ms 24231 df-tms 24232 df-nm 24492 df-ngp 24493 df-nrg 24495 df-nlm 24496 df-cncf 24793 df-cfil 25177 df-cmet 25179 df-cms 25257 |
| This theorem is referenced by: rerrext 34014 |
| Copyright terms: Public domain | W3C validator |