Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rezh Structured version   Visualization version   GIF version

Theorem rezh 33966
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
rezh (ℤMod‘ℝfld) ∈ NrmMod

Proof of Theorem rezh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 24675 . . . . 5 fld ∈ NrmRing
2 resubdrg 21524 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 483 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 21521 . . . . . 6 fld = (ℂflds ℝ)
54subrgnrg 24568 . . . . 5 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 692 . . . 4 fld ∈ NrmRing
7 eqid 2730 . . . . 5 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
87zhmnrg 33962 . . . 4 (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing)
9 nrgngp 24557 . . . 4 ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp)
106, 8, 9mp2b 10 . . 3 (ℤMod‘ℝfld) ∈ NrmGrp
11 nrgring 24558 . . . . 5 (ℝfld ∈ NrmRing → ℝfld ∈ Ring)
12 ringabl 20197 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Abel)
136, 11, 12mp2b 10 . . . 4 fld ∈ Abel
147zlmlmod 21439 . . . 4 (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod)
1513, 14mpbi 230 . . 3 (ℤMod‘ℝfld) ∈ LMod
16 zringnrg 24683 . . 3 ring ∈ NrmRing
1710, 15, 163pm3.2i 1340 . 2 ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing)
18 simpl 482 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ)
1918zcnd 12646 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ)
20 simpr 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2120recnd 11209 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
2219, 21absmuld 15430 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
23 subrgsubg 20493 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
243, 23ax-mp 5 . . . . . . . 8 ℝ ∈ (SubGrp‘ℂfld)
25 eqid 2730 . . . . . . . . 9 (.g‘ℂfld) = (.g‘ℂfld)
26 eqid 2730 . . . . . . . . . . 11 (.g‘ℝfld) = (.g‘ℝfld)
277, 26zlmvsca 21438 . . . . . . . . . 10 (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld))
2827eqcomi 2739 . . . . . . . . 9 ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld)
2925, 4, 28subgmulg 19079 . . . . . . . 8 ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
3024, 29mp3an1 1450 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
31 cnfldmulg 21322 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3221, 31syldan 591 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3330, 32eqtr3d 2767 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥))
3433fveq2d 6865 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥)))
35 zre 12540 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
36 remulcl 11160 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ)
37 fvres 6880 . . . . . . 7 ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3836, 37syl 17 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3935, 38sylan 580 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
4034, 39eqtrd 2765 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥)))
41 fvres 6880 . . . . 5 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
42 fvres 6880 . . . . 5 (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥))
4341, 42oveqan12d 7409 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
4422, 40, 433eqtr4d 2775 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))
4544rgen2 3178 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))
46 rebase 21522 . . . 4 ℝ = (Base‘ℝfld)
477, 46zlmbas 21434 . . 3 ℝ = (Base‘(ℤMod‘ℝfld))
48 recusp 25289 . . . . 5 fld ∈ CUnifSp
4948elexi 3473 . . . 4 fld ∈ V
50 cnring 21309 . . . . . . 7 fld ∈ Ring
51 ringmnd 20159 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5250, 51ax-mp 5 . . . . . 6 fld ∈ Mnd
53 0re 11183 . . . . . 6 0 ∈ ℝ
54 ax-resscn 11132 . . . . . 6 ℝ ⊆ ℂ
55 cnfldbas 21275 . . . . . . 7 ℂ = (Base‘ℂfld)
56 cnfld0 21311 . . . . . . 7 0 = (0g‘ℂfld)
57 cnfldnm 24673 . . . . . . 7 abs = (norm‘ℂfld)
584, 55, 56, 57ressnm 32893 . . . . . 6 ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld))
5952, 53, 54, 58mp3an 1463 . . . . 5 (abs ↾ ℝ) = (norm‘ℝfld)
607, 59zlmnm 33961 . . . 4 (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)))
6149, 60ax-mp 5 . . 3 (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))
62 eqid 2730 . . 3 ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld))
637zlmsca 21437 . . . 4 (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld)))
6449, 63ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℝfld))
65 zringbas 21370 . . 3 ℤ = (Base‘ℤring)
66 zringnm 33955 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
6766eqcomi 2739 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
6847, 61, 62, 64, 65, 67isnlm 24570 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))))
6917, 45, 68mpbir2an 711 1 (ℤMod‘ℝfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  cres 5643  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  cz 12536  abscabs 15207  Scalarcsca 17230   ·𝑠 cvsca 17231  Mndcmnd 18668  .gcmg 19006  SubGrpcsubg 19059  Abelcabl 19718  Ringcrg 20149  SubRingcsubrg 20485  DivRingcdr 20645  LModclmod 20773  fldccnfld 21271  ringczring 21363  ℤModczlm 21417  fldcrefld 21520  CUnifSpccusp 24191  normcnm 24471  NrmGrpcngp 24472  NrmRingcnrg 24474  NrmModcnlm 24475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647  df-abv 20725  df-lmod 20775  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-metu 21270  df-cnfld 21272  df-zring 21364  df-zlm 21421  df-refld 21521  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-flim 23833  df-fcls 23835  df-ust 24095  df-utop 24126  df-uss 24151  df-usp 24152  df-cfilu 24181  df-cusp 24192  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-cncf 24778  df-cfil 25162  df-cmet 25164  df-cms 25242
This theorem is referenced by:  rerrext  34006
  Copyright terms: Public domain W3C validator