Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rezh Structured version   Visualization version   GIF version

Theorem rezh 31921
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
rezh (ℤMod‘ℝfld) ∈ NrmMod

Proof of Theorem rezh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 23944 . . . . 5 fld ∈ NrmRing
2 resubdrg 20813 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 484 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 20810 . . . . . 6 fld = (ℂflds ℝ)
54subrgnrg 23837 . . . . 5 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 689 . . . 4 fld ∈ NrmRing
7 eqid 2738 . . . . 5 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
87zhmnrg 31917 . . . 4 (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing)
9 nrgngp 23826 . . . 4 ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp)
106, 8, 9mp2b 10 . . 3 (ℤMod‘ℝfld) ∈ NrmGrp
11 nrgring 23827 . . . . 5 (ℝfld ∈ NrmRing → ℝfld ∈ Ring)
12 ringabl 19819 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Abel)
136, 11, 12mp2b 10 . . . 4 fld ∈ Abel
147zlmlmod 20728 . . . 4 (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod)
1513, 14mpbi 229 . . 3 (ℤMod‘ℝfld) ∈ LMod
16 zringnrg 23951 . . 3 ring ∈ NrmRing
1710, 15, 163pm3.2i 1338 . 2 ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing)
18 simpl 483 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ)
1918zcnd 12427 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ)
20 simpr 485 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2120recnd 11003 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
2219, 21absmuld 15166 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
23 subrgsubg 20030 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
243, 23ax-mp 5 . . . . . . . 8 ℝ ∈ (SubGrp‘ℂfld)
25 eqid 2738 . . . . . . . . 9 (.g‘ℂfld) = (.g‘ℂfld)
26 eqid 2738 . . . . . . . . . . 11 (.g‘ℝfld) = (.g‘ℝfld)
277, 26zlmvsca 20727 . . . . . . . . . 10 (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld))
2827eqcomi 2747 . . . . . . . . 9 ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld)
2925, 4, 28subgmulg 18769 . . . . . . . 8 ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
3024, 29mp3an1 1447 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
31 cnfldmulg 20630 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3221, 31syldan 591 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3330, 32eqtr3d 2780 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥))
3433fveq2d 6778 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥)))
35 zre 12323 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
36 remulcl 10956 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ)
37 fvres 6793 . . . . . . 7 ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3836, 37syl 17 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3935, 38sylan 580 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
4034, 39eqtrd 2778 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥)))
41 fvres 6793 . . . . 5 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
42 fvres 6793 . . . . 5 (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥))
4341, 42oveqan12d 7294 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
4422, 40, 433eqtr4d 2788 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))
4544rgen2 3120 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))
46 rebase 20811 . . . 4 ℝ = (Base‘ℝfld)
477, 46zlmbas 20720 . . 3 ℝ = (Base‘(ℤMod‘ℝfld))
48 recusp 24546 . . . . 5 fld ∈ CUnifSp
4948elexi 3451 . . . 4 fld ∈ V
50 cnring 20620 . . . . . . 7 fld ∈ Ring
51 ringmnd 19793 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5250, 51ax-mp 5 . . . . . 6 fld ∈ Mnd
53 0re 10977 . . . . . 6 0 ∈ ℝ
54 ax-resscn 10928 . . . . . 6 ℝ ⊆ ℂ
55 cnfldbas 20601 . . . . . . 7 ℂ = (Base‘ℂfld)
56 cnfld0 20622 . . . . . . 7 0 = (0g‘ℂfld)
57 cnfldnm 23942 . . . . . . 7 abs = (norm‘ℂfld)
584, 55, 56, 57ressnm 31236 . . . . . 6 ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld))
5952, 53, 54, 58mp3an 1460 . . . . 5 (abs ↾ ℝ) = (norm‘ℝfld)
607, 59zlmnm 31916 . . . 4 (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)))
6149, 60ax-mp 5 . . 3 (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))
62 eqid 2738 . . 3 ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld))
637zlmsca 20726 . . . 4 (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld)))
6449, 63ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℝfld))
65 zringbas 20676 . . 3 ℤ = (Base‘ℤring)
66 zringnm 31908 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
6766eqcomi 2747 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
6847, 61, 62, 64, 65, 67isnlm 23839 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))))
6917, 45, 68mpbir2an 708 1 (ℤMod‘ℝfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cres 5591  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876  cz 12319  abscabs 14945  Scalarcsca 16965   ·𝑠 cvsca 16966  Mndcmnd 18385  .gcmg 18700  SubGrpcsubg 18749  Abelcabl 19387  Ringcrg 19783  DivRingcdr 19991  SubRingcsubrg 20020  LModclmod 20123  fldccnfld 20597  ringczring 20670  ℤModczlm 20702  fldcrefld 20809  CUnifSpccusp 23449  normcnm 23732  NrmGrpcngp 23733  NrmRingcnrg 23735  NrmModcnlm 23736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-abv 20077  df-lmod 20125  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-metu 20596  df-cnfld 20598  df-zring 20671  df-zlm 20706  df-refld 20810  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-flim 23090  df-fcls 23092  df-ust 23352  df-utop 23383  df-uss 23408  df-usp 23409  df-cfilu 23439  df-cusp 23450  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-cncf 24041  df-cfil 24419  df-cmet 24421  df-cms 24499
This theorem is referenced by:  rerrext  31959
  Copyright terms: Public domain W3C validator