| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rezh | Structured version Visualization version GIF version | ||
| Description: The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| rezh | ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24715 | . . . . 5 ⊢ ℂfld ∈ NrmRing | |
| 2 | resubdrg 21554 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 3 | 2 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 4 | df-refld 21551 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 5 | 4 | subrgnrg 24608 | . . . . 5 ⊢ ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing) |
| 6 | 1, 3, 5 | mp2an 692 | . . . 4 ⊢ ℝfld ∈ NrmRing |
| 7 | eqid 2733 | . . . . 5 ⊢ (ℤMod‘ℝfld) = (ℤMod‘ℝfld) | |
| 8 | 7 | zhmnrg 34050 | . . . 4 ⊢ (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing) |
| 9 | nrgngp 24597 | . . . 4 ⊢ ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp) | |
| 10 | 6, 8, 9 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ NrmGrp |
| 11 | nrgring 24598 | . . . . 5 ⊢ (ℝfld ∈ NrmRing → ℝfld ∈ Ring) | |
| 12 | ringabl 20207 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Abel) | |
| 13 | 6, 11, 12 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ Abel |
| 14 | 7 | zlmlmod 21468 | . . . 4 ⊢ (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod) |
| 15 | 13, 14 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ LMod |
| 16 | zringnrg 24723 | . . 3 ⊢ ℤring ∈ NrmRing | |
| 17 | 10, 15, 16 | 3pm3.2i 1340 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
| 18 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ) | |
| 19 | 18 | zcnd 12588 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 21 | 20 | recnd 11151 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 22 | 19, 21 | absmuld 15371 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 23 | subrgsubg 20501 | . . . . . . . . 9 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 24 | 3, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ℝ ∈ (SubGrp‘ℂfld) |
| 25 | eqid 2733 | . . . . . . . . 9 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 26 | eqid 2733 | . . . . . . . . . . 11 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 27 | 7, 26 | zlmvsca 21467 | . . . . . . . . . 10 ⊢ (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld)) |
| 28 | 27 | eqcomi 2742 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld) |
| 29 | 25, 4, 28 | subgmulg 19061 | . . . . . . . 8 ⊢ ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 30 | 24, 29 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 31 | cnfldmulg 21349 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
| 32 | 21, 31 | syldan 591 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) |
| 33 | 30, 32 | eqtr3d 2770 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥)) |
| 34 | 33 | fveq2d 6835 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥))) |
| 35 | zre 12483 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 36 | remulcl 11102 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ) | |
| 37 | fvres 6850 | . . . . . . 7 ⊢ ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) | |
| 38 | 36, 37 | syl 17 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 39 | 35, 38 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 40 | 34, 39 | eqtrd 2768 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 41 | fvres 6850 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
| 42 | fvres 6850 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥)) | |
| 43 | 41, 42 | oveqan12d 7374 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 44 | 22, 40, 43 | 3eqtr4d 2778 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))) |
| 45 | 44 | rgen2 3173 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) |
| 46 | rebase 21552 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 47 | 7, 46 | zlmbas 21463 | . . 3 ⊢ ℝ = (Base‘(ℤMod‘ℝfld)) |
| 48 | recusp 25329 | . . . . 5 ⊢ ℝfld ∈ CUnifSp | |
| 49 | 48 | elexi 3460 | . . . 4 ⊢ ℝfld ∈ V |
| 50 | cnring 21336 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
| 51 | ringmnd 20169 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 52 | 50, 51 | ax-mp 5 | . . . . . 6 ⊢ ℂfld ∈ Mnd |
| 53 | 0re 11125 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 54 | ax-resscn 11074 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 55 | cnfldbas 21304 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 56 | cnfld0 21338 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 57 | cnfldnm 24713 | . . . . . . 7 ⊢ abs = (norm‘ℂfld) | |
| 58 | 4, 55, 56, 57 | ressnm 32974 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld)) |
| 59 | 52, 53, 54, 58 | mp3an 1463 | . . . . 5 ⊢ (abs ↾ ℝ) = (norm‘ℝfld) |
| 60 | 7, 59 | zlmnm 34049 | . . . 4 ⊢ (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))) |
| 61 | 49, 60 | ax-mp 5 | . . 3 ⊢ (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)) |
| 62 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld)) | |
| 63 | 7 | zlmsca 21466 | . . . 4 ⊢ (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld))) |
| 64 | 49, 63 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℝfld)) |
| 65 | zringbas 21399 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 66 | zringnm 34043 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
| 67 | 66 | eqcomi 2742 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
| 68 | 47, 61, 62, 64, 65, 67 | isnlm 24610 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))) |
| 69 | 17, 45, 68 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 · cmul 11022 ℤcz 12479 abscabs 15148 Scalarcsca 17171 ·𝑠 cvsca 17172 Mndcmnd 18650 .gcmg 18988 SubGrpcsubg 19041 Abelcabl 19701 Ringcrg 20159 SubRingcsubrg 20493 DivRingcdr 20653 LModclmod 20802 ℂfldccnfld 21300 ℤringczring 21392 ℤModczlm 21446 ℝfldcrefld 21550 CUnifSpccusp 24231 normcnm 24511 NrmGrpcngp 24512 NrmRingcnrg 24514 NrmModcnlm 24515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-subrng 20470 df-subrg 20494 df-drng 20655 df-abv 20733 df-lmod 20804 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-metu 21299 df-cnfld 21301 df-zring 21393 df-zlm 21450 df-refld 21551 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-cn 23162 df-cnp 23163 df-haus 23250 df-cmp 23322 df-tx 23497 df-hmeo 23690 df-fil 23781 df-flim 23874 df-fcls 23876 df-ust 24136 df-utop 24166 df-uss 24191 df-usp 24192 df-cfilu 24221 df-cusp 24232 df-xms 24255 df-ms 24256 df-tms 24257 df-nm 24517 df-ngp 24518 df-nrg 24520 df-nlm 24521 df-cncf 24818 df-cfil 25202 df-cmet 25204 df-cms 25282 |
| This theorem is referenced by: rerrext 34094 |
| Copyright terms: Public domain | W3C validator |