| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rezh | Structured version Visualization version GIF version | ||
| Description: The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| rezh | ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24675 | . . . . 5 ⊢ ℂfld ∈ NrmRing | |
| 2 | resubdrg 21524 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 3 | 2 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 4 | df-refld 21521 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 5 | 4 | subrgnrg 24568 | . . . . 5 ⊢ ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing) |
| 6 | 1, 3, 5 | mp2an 692 | . . . 4 ⊢ ℝfld ∈ NrmRing |
| 7 | eqid 2730 | . . . . 5 ⊢ (ℤMod‘ℝfld) = (ℤMod‘ℝfld) | |
| 8 | 7 | zhmnrg 33962 | . . . 4 ⊢ (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing) |
| 9 | nrgngp 24557 | . . . 4 ⊢ ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp) | |
| 10 | 6, 8, 9 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ NrmGrp |
| 11 | nrgring 24558 | . . . . 5 ⊢ (ℝfld ∈ NrmRing → ℝfld ∈ Ring) | |
| 12 | ringabl 20197 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Abel) | |
| 13 | 6, 11, 12 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ Abel |
| 14 | 7 | zlmlmod 21439 | . . . 4 ⊢ (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod) |
| 15 | 13, 14 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ LMod |
| 16 | zringnrg 24683 | . . 3 ⊢ ℤring ∈ NrmRing | |
| 17 | 10, 15, 16 | 3pm3.2i 1340 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
| 18 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ) | |
| 19 | 18 | zcnd 12646 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 21 | 20 | recnd 11209 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 22 | 19, 21 | absmuld 15430 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 23 | subrgsubg 20493 | . . . . . . . . 9 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 24 | 3, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ℝ ∈ (SubGrp‘ℂfld) |
| 25 | eqid 2730 | . . . . . . . . 9 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 26 | eqid 2730 | . . . . . . . . . . 11 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 27 | 7, 26 | zlmvsca 21438 | . . . . . . . . . 10 ⊢ (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld)) |
| 28 | 27 | eqcomi 2739 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld) |
| 29 | 25, 4, 28 | subgmulg 19079 | . . . . . . . 8 ⊢ ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 30 | 24, 29 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 31 | cnfldmulg 21322 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
| 32 | 21, 31 | syldan 591 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) |
| 33 | 30, 32 | eqtr3d 2767 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥)) |
| 34 | 33 | fveq2d 6865 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥))) |
| 35 | zre 12540 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 36 | remulcl 11160 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ) | |
| 37 | fvres 6880 | . . . . . . 7 ⊢ ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) | |
| 38 | 36, 37 | syl 17 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 39 | 35, 38 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 40 | 34, 39 | eqtrd 2765 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 41 | fvres 6880 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
| 42 | fvres 6880 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥)) | |
| 43 | 41, 42 | oveqan12d 7409 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 44 | 22, 40, 43 | 3eqtr4d 2775 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))) |
| 45 | 44 | rgen2 3178 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) |
| 46 | rebase 21522 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 47 | 7, 46 | zlmbas 21434 | . . 3 ⊢ ℝ = (Base‘(ℤMod‘ℝfld)) |
| 48 | recusp 25289 | . . . . 5 ⊢ ℝfld ∈ CUnifSp | |
| 49 | 48 | elexi 3473 | . . . 4 ⊢ ℝfld ∈ V |
| 50 | cnring 21309 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
| 51 | ringmnd 20159 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 52 | 50, 51 | ax-mp 5 | . . . . . 6 ⊢ ℂfld ∈ Mnd |
| 53 | 0re 11183 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 54 | ax-resscn 11132 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 55 | cnfldbas 21275 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 56 | cnfld0 21311 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 57 | cnfldnm 24673 | . . . . . . 7 ⊢ abs = (norm‘ℂfld) | |
| 58 | 4, 55, 56, 57 | ressnm 32893 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld)) |
| 59 | 52, 53, 54, 58 | mp3an 1463 | . . . . 5 ⊢ (abs ↾ ℝ) = (norm‘ℝfld) |
| 60 | 7, 59 | zlmnm 33961 | . . . 4 ⊢ (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))) |
| 61 | 49, 60 | ax-mp 5 | . . 3 ⊢ (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)) |
| 62 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld)) | |
| 63 | 7 | zlmsca 21437 | . . . 4 ⊢ (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld))) |
| 64 | 49, 63 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℝfld)) |
| 65 | zringbas 21370 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 66 | zringnm 33955 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
| 67 | 66 | eqcomi 2739 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
| 68 | 47, 61, 62, 64, 65, 67 | isnlm 24570 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))) |
| 69 | 17, 45, 68 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 ℤcz 12536 abscabs 15207 Scalarcsca 17230 ·𝑠 cvsca 17231 Mndcmnd 18668 .gcmg 19006 SubGrpcsubg 19059 Abelcabl 19718 Ringcrg 20149 SubRingcsubrg 20485 DivRingcdr 20645 LModclmod 20773 ℂfldccnfld 21271 ℤringczring 21363 ℤModczlm 21417 ℝfldcrefld 21520 CUnifSpccusp 24191 normcnm 24471 NrmGrpcngp 24472 NrmRingcnrg 24474 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrng 20462 df-subrg 20486 df-drng 20647 df-abv 20725 df-lmod 20775 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-metu 21270 df-cnfld 21272 df-zring 21364 df-zlm 21421 df-refld 21521 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-flim 23833 df-fcls 23835 df-ust 24095 df-utop 24126 df-uss 24151 df-usp 24152 df-cfilu 24181 df-cusp 24192 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-cncf 24778 df-cfil 25162 df-cmet 25164 df-cms 25242 |
| This theorem is referenced by: rerrext 34006 |
| Copyright terms: Public domain | W3C validator |