| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rezh | Structured version Visualization version GIF version | ||
| Description: The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| rezh | ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnrg 24644 | . . . . 5 ⊢ ℂfld ∈ NrmRing | |
| 2 | resubdrg 21493 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 3 | 2 | simpli 483 | . . . . 5 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 4 | df-refld 21490 | . . . . . 6 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 5 | 4 | subrgnrg 24537 | . . . . 5 ⊢ ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing) |
| 6 | 1, 3, 5 | mp2an 692 | . . . 4 ⊢ ℝfld ∈ NrmRing |
| 7 | eqid 2729 | . . . . 5 ⊢ (ℤMod‘ℝfld) = (ℤMod‘ℝfld) | |
| 8 | 7 | zhmnrg 33928 | . . . 4 ⊢ (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing) |
| 9 | nrgngp 24526 | . . . 4 ⊢ ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp) | |
| 10 | 6, 8, 9 | mp2b 10 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ NrmGrp |
| 11 | nrgring 24527 | . . . . 5 ⊢ (ℝfld ∈ NrmRing → ℝfld ∈ Ring) | |
| 12 | ringabl 20166 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Abel) | |
| 13 | 6, 11, 12 | mp2b 10 | . . . 4 ⊢ ℝfld ∈ Abel |
| 14 | 7 | zlmlmod 21408 | . . . 4 ⊢ (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod) |
| 15 | 13, 14 | mpbi 230 | . . 3 ⊢ (ℤMod‘ℝfld) ∈ LMod |
| 16 | zringnrg 24652 | . . 3 ⊢ ℤring ∈ NrmRing | |
| 17 | 10, 15, 16 | 3pm3.2i 1340 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) |
| 18 | simpl 482 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ) | |
| 19 | 18 | zcnd 12615 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 21 | 20 | recnd 11178 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 22 | 19, 21 | absmuld 15399 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 23 | subrgsubg 20462 | . . . . . . . . 9 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 24 | 3, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ℝ ∈ (SubGrp‘ℂfld) |
| 25 | eqid 2729 | . . . . . . . . 9 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 26 | eqid 2729 | . . . . . . . . . . 11 ⊢ (.g‘ℝfld) = (.g‘ℝfld) | |
| 27 | 7, 26 | zlmvsca 21407 | . . . . . . . . . 10 ⊢ (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld)) |
| 28 | 27 | eqcomi 2738 | . . . . . . . . 9 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld) |
| 29 | 25, 4, 28 | subgmulg 19048 | . . . . . . . 8 ⊢ ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 30 | 24, 29 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) |
| 31 | cnfldmulg 21291 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) | |
| 32 | 21, 31 | syldan 591 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥)) |
| 33 | 30, 32 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥)) |
| 34 | 33 | fveq2d 6844 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥))) |
| 35 | zre 12509 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 36 | remulcl 11129 | . . . . . . 7 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ) | |
| 37 | fvres 6859 | . . . . . . 7 ⊢ ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) | |
| 38 | 36, 37 | syl 17 | . . . . . 6 ⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 39 | 35, 38 | sylan 580 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 40 | 34, 39 | eqtrd 2764 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥))) |
| 41 | fvres 6859 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧)) | |
| 42 | fvres 6859 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥)) | |
| 43 | 41, 42 | oveqan12d 7388 | . . . 4 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥))) |
| 44 | 22, 40, 43 | 3eqtr4d 2774 | . . 3 ⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))) |
| 45 | 44 | rgen2 3175 | . 2 ⊢ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) |
| 46 | rebase 21491 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
| 47 | 7, 46 | zlmbas 21403 | . . 3 ⊢ ℝ = (Base‘(ℤMod‘ℝfld)) |
| 48 | recusp 25258 | . . . . 5 ⊢ ℝfld ∈ CUnifSp | |
| 49 | 48 | elexi 3467 | . . . 4 ⊢ ℝfld ∈ V |
| 50 | cnring 21278 | . . . . . . 7 ⊢ ℂfld ∈ Ring | |
| 51 | ringmnd 20128 | . . . . . . 7 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 52 | 50, 51 | ax-mp 5 | . . . . . 6 ⊢ ℂfld ∈ Mnd |
| 53 | 0re 11152 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 54 | ax-resscn 11101 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 55 | cnfldbas 21244 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 56 | cnfld0 21280 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
| 57 | cnfldnm 24642 | . . . . . . 7 ⊢ abs = (norm‘ℂfld) | |
| 58 | 4, 55, 56, 57 | ressnm 32859 | . . . . . 6 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld)) |
| 59 | 52, 53, 54, 58 | mp3an 1463 | . . . . 5 ⊢ (abs ↾ ℝ) = (norm‘ℝfld) |
| 60 | 7, 59 | zlmnm 33927 | . . . 4 ⊢ (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))) |
| 61 | 49, 60 | ax-mp 5 | . . 3 ⊢ (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)) |
| 62 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld)) | |
| 63 | 7 | zlmsca 21406 | . . . 4 ⊢ (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld))) |
| 64 | 49, 63 | ax-mp 5 | . . 3 ⊢ ℤring = (Scalar‘(ℤMod‘ℝfld)) |
| 65 | zringbas 21339 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
| 66 | zringnm 33921 | . . . 4 ⊢ (norm‘ℤring) = (abs ↾ ℤ) | |
| 67 | 66 | eqcomi 2738 | . . 3 ⊢ (abs ↾ ℤ) = (norm‘ℤring) |
| 68 | 47, 61, 62, 64, 65, 67 | isnlm 24539 | . 2 ⊢ ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))) |
| 69 | 17, 45, 68 | mpbir2an 711 | 1 ⊢ (ℤMod‘ℝfld) ∈ NrmMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 · cmul 11049 ℤcz 12505 abscabs 15176 Scalarcsca 17199 ·𝑠 cvsca 17200 Mndcmnd 18637 .gcmg 18975 SubGrpcsubg 19028 Abelcabl 19687 Ringcrg 20118 SubRingcsubrg 20454 DivRingcdr 20614 LModclmod 20742 ℂfldccnfld 21240 ℤringczring 21332 ℤModczlm 21386 ℝfldcrefld 21489 CUnifSpccusp 24160 normcnm 24440 NrmGrpcngp 24441 NrmRingcnrg 24443 NrmModcnlm 24444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-subrng 20431 df-subrg 20455 df-drng 20616 df-abv 20694 df-lmod 20744 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-metu 21239 df-cnfld 21241 df-zring 21333 df-zlm 21390 df-refld 21490 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-flim 23802 df-fcls 23804 df-ust 24064 df-utop 24095 df-uss 24120 df-usp 24121 df-cfilu 24150 df-cusp 24161 df-xms 24184 df-ms 24185 df-tms 24186 df-nm 24446 df-ngp 24447 df-nrg 24449 df-nlm 24450 df-cncf 24747 df-cfil 25131 df-cmet 25133 df-cms 25211 |
| This theorem is referenced by: rerrext 33972 |
| Copyright terms: Public domain | W3C validator |