| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > regsumsupp | Structured version Visualization version GIF version | ||
| Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| regsumsupp | ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21265 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfld0 21299 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 3 | cnring 21297 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 4 | ringcmn 20167 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℂfld ∈ CMnd) |
| 6 | simp3 1138 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
| 7 | simp1 1136 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℝ) | |
| 8 | ax-resscn 11066 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 9 | fss 6668 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ) | |
| 10 | 7, 8, 9 | sylancl 586 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℂ) |
| 11 | ssidd 3959 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0)) | |
| 12 | simp2 1137 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹 finSupp 0) | |
| 13 | 1, 2, 5, 6, 10, 11, 12 | gsumres 19792 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹)) |
| 14 | cnfldadd 21267 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 15 | df-refld 21512 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 16 | 8 | a1i 11 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℝ ⊆ ℂ) |
| 17 | 0red 11118 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 0 ∈ ℝ) | |
| 18 | simpr 484 | . . . . . 6 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 19 | 18 | addlidd 11317 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
| 20 | 18 | addridd 11316 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
| 21 | 19, 20 | jca 511 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
| 22 | 1, 14, 15, 5, 6, 16, 7, 17, 21 | gsumress 18556 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹)) |
| 23 | 13, 22 | eqtr2d 2765 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0)))) |
| 24 | suppssdm 8110 | . . . . 5 ⊢ (𝐹 supp 0) ⊆ dom 𝐹 | |
| 25 | 24, 7 | fssdm 6671 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ 𝐼) |
| 26 | 7, 25 | feqresmpt 6892 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) |
| 27 | 26 | oveq2d 7365 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥)))) |
| 28 | 12 | fsuppimpd 9259 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ∈ Fin) |
| 29 | simpl1 1192 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ) | |
| 30 | 25 | sselda 3935 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥 ∈ 𝐼) |
| 31 | 29, 30 | ffvelcdmd 7019 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℝ) |
| 32 | 8, 31 | sselid 3933 | . . 3 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
| 33 | 28, 32 | gsumfsum 21341 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
| 34 | 23, 27, 33 | 3eqtrd 2768 | 1 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 supp csupp 8093 finSupp cfsupp 9251 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 Σcsu 15593 Σg cgsu 17344 CMndccmn 19659 Ringcrg 20118 ℂfldccnfld 21261 ℝfldcrefld 21511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21262 df-refld 21512 |
| This theorem is referenced by: rrxcph 25290 rrxmval 25303 rrxtopnfi 46272 |
| Copyright terms: Public domain | W3C validator |