![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regsumsupp | Structured version Visualization version GIF version |
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
regsumsupp | ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21391 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfld0 21428 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
3 | cnring 21426 | . . . . 5 ⊢ ℂfld ∈ Ring | |
4 | ringcmn 20305 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℂfld ∈ CMnd) |
6 | simp3 1138 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
7 | simp1 1136 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℝ) | |
8 | ax-resscn 11241 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
9 | fss 6763 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ) | |
10 | 7, 8, 9 | sylancl 585 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℂ) |
11 | ssidd 4032 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0)) | |
12 | simp2 1137 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹 finSupp 0) | |
13 | 1, 2, 5, 6, 10, 11, 12 | gsumres 19955 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹)) |
14 | cnfldadd 21393 | . . . 4 ⊢ + = (+g‘ℂfld) | |
15 | df-refld 21646 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
16 | 8 | a1i 11 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℝ ⊆ ℂ) |
17 | 0red 11293 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 0 ∈ ℝ) | |
18 | simpr 484 | . . . . . 6 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
19 | 18 | addlidd 11491 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
20 | 18 | addridd 11490 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
21 | 19, 20 | jca 511 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
22 | 1, 14, 15, 5, 6, 16, 7, 17, 21 | gsumress 18720 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹)) |
23 | 13, 22 | eqtr2d 2781 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0)))) |
24 | suppssdm 8218 | . . . . 5 ⊢ (𝐹 supp 0) ⊆ dom 𝐹 | |
25 | 24, 7 | fssdm 6766 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ 𝐼) |
26 | 7, 25 | feqresmpt 6991 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) |
27 | 26 | oveq2d 7464 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥)))) |
28 | 12 | fsuppimpd 9439 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ∈ Fin) |
29 | simpl1 1191 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ) | |
30 | 25 | sselda 4008 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥 ∈ 𝐼) |
31 | 29, 30 | ffvelcdmd 7119 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℝ) |
32 | 8, 31 | sselid 4006 | . . 3 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
33 | 28, 32 | gsumfsum 21475 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
34 | 23, 27, 33 | 3eqtrd 2784 | 1 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 finSupp cfsupp 9431 ℂcc 11182 ℝcr 11183 0cc0 11184 + caddc 11187 Σcsu 15734 Σg cgsu 17500 CMndccmn 19822 Ringcrg 20260 ℂfldccnfld 21387 ℝfldcrefld 21645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21388 df-refld 21646 |
This theorem is referenced by: rrxcph 25445 rrxmval 25458 rrxtopnfi 46208 |
Copyright terms: Public domain | W3C validator |