MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsumsupp Structured version   Visualization version   GIF version

Theorem regsumsupp 20684
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.)
Assertion
Ref Expression
regsumsupp ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉

Proof of Theorem regsumsupp
StepHypRef Expression
1 cnfldbas 20467 . . . 4 ℂ = (Base‘ℂfld)
2 cnfld0 20487 . . . 4 0 = (0g‘ℂfld)
3 cnring 20485 . . . . 5 fld ∈ Ring
4 ringcmn 19253 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℂfld ∈ CMnd)
6 simp3 1132 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐼𝑉)
7 simp1 1130 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℝ)
8 ax-resscn 10586 . . . . 5 ℝ ⊆ ℂ
9 fss 6523 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ)
107, 8, 9sylancl 586 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℂ)
11 ssidd 3993 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
12 simp2 1131 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹 finSupp 0)
131, 2, 5, 6, 10, 11, 12gsumres 18955 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹))
14 cnfldadd 20468 . . . 4 + = (+g‘ℂfld)
15 df-refld 20667 . . . 4 fld = (ℂflds ℝ)
168a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℝ ⊆ ℂ)
17 0red 10636 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 0 ∈ ℝ)
18 simpr 485 . . . . . 6 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1918addid2d 10833 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
2018addid1d 10832 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
2119, 20jca 512 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
221, 14, 15, 5, 6, 16, 7, 17, 21gsumress 17883 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹))
2313, 22eqtr2d 2861 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))))
24 suppssdm 7837 . . . . 5 (𝐹 supp 0) ⊆ dom 𝐹
2524, 7fssdm 6526 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ 𝐼)
267, 25feqresmpt 6730 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥)))
2726oveq2d 7167 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))))
2812fsuppimpd 8832 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ∈ Fin)
29 simpl1 1185 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ)
3025sselda 3970 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥𝐼)
3129, 30ffvelrnd 6847 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℝ)
328, 31sseldi 3968 . . 3 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℂ)
3328, 32gsumfsum 20530 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
3423, 27, 333eqtrd 2864 1 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wss 3939   class class class wbr 5062  cmpt 5142  cres 5555  wf 6347  cfv 6351  (class class class)co 7151   supp csupp 7824   finSupp cfsupp 8825  cc 10527  cr 10528  0cc0 10529   + caddc 10532  Σcsu 15035   Σg cgsu 16706  CMndccmn 18828  Ringcrg 19219  fldccnfld 20463  fldcrefld 20666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-cnfld 20464  df-refld 20667
This theorem is referenced by:  rrxcph  23912  rrxmval  23925  rrxtopnfi  42440
  Copyright terms: Public domain W3C validator