MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 24952
Description: Lemma for amgm 24953. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
amgm.2 (𝜑𝐴 ∈ Fin)
amgm.3 (𝜑𝐴 ≠ ∅)
amgm.4 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlem (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlem
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 19997 . . . . . . . 8 0 = (0g‘ℂfld)
2 cnring 19995 . . . . . . . . 9 fld ∈ Ring
3 ringabl 18801 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (𝜑 → ℂfld ∈ Abel)
5 amgm.2 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 resubdrg 20182 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
76simpli 472 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
8 subrgsubg 19009 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
97, 8mp1i 13 . . . . . . . 8 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
10 amgm.4 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
1110ffvelrnda 6590 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
1211relogcld 24605 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
1312renegcld 10751 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
1413fmpttd 6616 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
15 c0ex 10328 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
1714, 5, 16fdmfifsupp 8533 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 18540 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℝ)
1918recnd 10362 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℂ)
20 amgm.3 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
21 hashnncl 13394 . . . . . . . . 9 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
225, 21syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
2320, 22mpbird 248 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ)
2423nncnd 11332 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
2523nnne0d 11362 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2619, 24, 25divnegd 11108 . . . . 5 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
2712recnd 10362 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
285, 27gsumfsum 20040 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
2927negnegd 10677 . . . . . . . . . 10 ((𝜑𝑘𝐴) → --(log‘(𝐹𝑘)) = (log‘(𝐹𝑘)))
3029sumeq2dv 14675 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
3113recnd 10362 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
325, 31fsumneg 14760 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3328, 30, 323eqtr2rd 2858 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘(𝐹𝑘)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
345, 31gsumfsum 20040 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3534negeqd 10569 . . . . . . . 8 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3610feqmptd 6479 . . . . . . . . . 10 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
37 relogf1o 24549 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6362 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . . . . 12 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6479 . . . . . . . . . . 11 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
41 fvres 6436 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
4241mpteq2ia 4945 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
4340, 42syl6eq 2867 . . . . . . . . . 10 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
44 fveq2 6417 . . . . . . . . . 10 (𝑥 = (𝐹𝑘) → (log‘𝑥) = (log‘(𝐹𝑘)))
4511, 36, 43, 44fmptco 6628 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹) = (𝑘𝐴 ↦ (log‘(𝐹𝑘))))
4645oveq2d 6899 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
4733, 35, 463eqtr4d 2861 . . . . . . 7 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrp‘ℂfld)
4948oveq1i 6893 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5049rpmsubg 20037 . . . . . . . . . . . . 13 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
51 subgsubm 17837 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
53 cnfldbas 19977 . . . . . . . . . . . . . . 15 ℂ = (Base‘ℂfld)
54 cndrng 20002 . . . . . . . . . . . . . . 15 fld ∈ DivRing
5553, 1, 54drngui 18976 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (Unit‘ℂfld)
5655, 48unitsubm 18891 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
57 eqid 2817 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5857subsubm 17581 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
6052, 59mpbi 221 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
6160simpli 472 . . . . . . . . . 10 + ∈ (SubMnd‘𝑀)
62 eqid 2817 . . . . . . . . . . 11 (𝑀s+) = (𝑀s+)
6362submbas 17579 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
6461, 63ax-mp 5 . . . . . . . . 9 + = (Base‘(𝑀s+))
65 cnfld1 19998 . . . . . . . . . . . 12 1 = (1r‘ℂfld)
6648, 65ringidval 18724 . . . . . . . . . . 11 1 = (0g𝑀)
6762, 66subm0 17580 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀s+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0g‘(𝑀s+))
69 cncrng 19994 . . . . . . . . . . 11 fld ∈ CRing
7048crngmgp 18776 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (𝜑𝑀 ∈ CMnd)
7262submmnd 17578 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑀s+) ∈ Mnd)
7462subcmn 18462 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
7571, 73, 74syl2anc 575 . . . . . . . . 9 (𝜑 → (𝑀s+) ∈ CMnd)
76 df-refld 20179 . . . . . . . . . . . 12 fld = (ℂflds ℝ)
7776subrgring 19006 . . . . . . . . . . 11 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 fld ∈ Ring
79 ringmnd 18777 . . . . . . . . . 10 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (𝜑 → ℝfld ∈ Mnd)
8148oveq1i 6893 . . . . . . . . . . . 12 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
8281reloggim 24581 . . . . . . . . . . 11 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
83 gimghm 17927 . . . . . . . . . . 11 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
85 ghmmhm 17891 . . . . . . . . . 10 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
87 1ex 10330 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ V)
8910, 5, 88fdmfifsupp 8533 . . . . . . . . 9 (𝜑𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 18558 . . . . . . . 8 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
91 subgsubm 17837 . . . . . . . . . 10 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
929, 91syl 17 . . . . . . . . 9 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
93 fco 6282 . . . . . . . . . 10 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
9439, 10, 93syl2anc 575 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
955, 92, 94, 76gsumsubm 17597 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
975, 96, 10, 62gsumsubm 17597 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
9897fveq2d 6421 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
9990, 95, 983eqtr4d 2861 . . . . . . 7 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 18539 . . . . . . . 8 (𝜑 → (𝑀 Σg 𝐹) ∈ ℝ+)
101 fvres 6436 . . . . . . . 8 ((𝑀 Σg 𝐹) ∈ ℝ+ → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
102100, 101syl 17 . . . . . . 7 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
10347, 99, 1023eqtrd 2855 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (log‘(𝑀 Σg 𝐹)))
104103oveq1d 6898 . . . . 5 (𝜑 → (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)))
105100relogcld 24605 . . . . . . 7 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℝ)
106105recnd 10362 . . . . . 6 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℂ)
107106, 24, 25divrec2d 11099 . . . . 5 (𝜑 → ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10826, 104, 1073eqtrd 2855 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10936oveq2d 6899 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
11011rpcnd 12107 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1115, 110gsumfsum 20040 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
112109, 111eqtrd 2851 . . . . . . . 8 (𝜑 → (ℂfld Σg 𝐹) = Σ𝑘𝐴 (𝐹𝑘))
1135, 20, 11fsumrpcl 14710 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℝ+)
114112, 113eqeltrd 2896 . . . . . . 7 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ+)
11523nnrpd 12103 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℝ+)
116114, 115rpdivcld 12122 . . . . . 6 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+)
117116relogcld 24605 . . . . 5 (𝜑 → (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ)
11818, 23nndivred 11366 . . . . 5 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℝ)
119 rpssre 12076 . . . . . . . . 9 + ⊆ ℝ
120119a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
121 relogcl 24558 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (log‘𝑤) ∈ ℝ)
122121adantl 469 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
123122renegcld 10751 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
124123fmpttd 6616 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
125 ioorp 12488 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
126125eleq2i 2888 . . . . . . . . . . 11 (𝑎 ∈ (0(,)+∞) ↔ 𝑎 ∈ ℝ+)
127125eleq2i 2888 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
128 iccssioo2 12483 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
129126, 127, 128syl2anbr 588 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
130129, 125syl6sseq 3859 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
131130adantl 469 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
13223nnrecred 11363 . . . . . . . . . 10 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
133115rpreccld 12115 . . . . . . . . . . 11 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
134133rpge0d 12109 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (♯‘𝐴)))
135 elrege0 12517 . . . . . . . . . 10 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (♯‘𝐴))))
136132, 134, 135sylanbrc 574 . . . . . . . . 9 (𝜑 → (1 / (♯‘𝐴)) ∈ (0[,)+∞))
137 fconst6g 6318 . . . . . . . . 9 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
138136, 137syl 17 . . . . . . . 8 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
139 0lt1 10844 . . . . . . . . 9 0 < 1
140 fconstmpt 5376 . . . . . . . . . . 11 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
141140oveq2i 6894 . . . . . . . . . 10 (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
142 ringmnd 18777 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1432, 142mp1i 13 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Mnd)
144132recnd 10362 . . . . . . . . . . . 12 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
145 eqid 2817 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
14653, 145gsumconst 18554 . . . . . . . . . . . 12 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
147143, 5, 144, 146syl3anc 1483 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
14823nnzd 11766 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
149 cnfldmulg 20005 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
150148, 144, 149syl2anc 575 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
15124, 25recidd 11090 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
152147, 150, 1513eqtrd 2855 . . . . . . . . . 10 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = 1)
153141, 152syl5eq 2863 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
154139, 153syl5breqr 4893 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))
155 logccv 24645 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1561553adant1 1153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
157 ioossre 12472 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℝ
158 simp3 1161 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
159157, 158sseldi 3807 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
160 simp21 1256 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
161160relogcld 24605 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
162159, 161remulcld 10364 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
163 1re 10334 . . . . . . . . . . . . . . 15 1 ∈ ℝ
164 resubcl 10639 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
165163, 159, 164sylancr 577 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
166 simp22 1257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
167166relogcld 24605 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
168165, 167remulcld 10364 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
169162, 168readdcld 10363 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
170 simp1 1159 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑)
171 ioossicc 12496 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ (0[,]1)
172171, 158sseldi 3807 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1))
173120, 131cvxcl 24947 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
174170, 160, 166, 172, 173syl13anc 1484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
175174relogcld 24605 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
176169, 175ltnegd 10899 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
177156, 176mpbid 223 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
178 fveq2 6417 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
179178negeqd 10569 . . . . . . . . . . . 12 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
180 eqid 2817 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
181 negex 10573 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
182179, 180, 181fvmpt 6512 . . . . . . . . . . 11 (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
183174, 182syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
184 fveq2 6417 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
185184negeqd 10569 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
186 negex 10573 . . . . . . . . . . . . . . . 16 -(log‘𝑥) ∈ V
187185, 180, 186fvmpt 6512 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
188160, 187syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
189188oveq2d 6899 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
190159recnd 10362 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
191161recnd 10362 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
192190, 191mulneg2d 10778 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
193189, 192eqtrd 2851 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
194 fveq2 6417 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
195194negeqd 10569 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
196 negex 10573 . . . . . . . . . . . . . . . 16 -(log‘𝑦) ∈ V
197195, 180, 196fvmpt 6512 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
198166, 197syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
199198oveq2d 6899 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
200165recnd 10362 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
201167recnd 10362 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
202200, 201mulneg2d 10778 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
203199, 202eqtrd 2851 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
204193, 203oveq12d 6901 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
205162recnd 10362 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
206168recnd 10362 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
207205, 206negdid 10699 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
208204, 207eqtr4d 2854 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
209177, 183, 2083brtr4d 4887 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
210120, 124, 131, 209scvxcvx 24948 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
211120, 124, 131, 5, 138, 10, 154, 210jensen 24951 . . . . . . 7 (𝜑 → (((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))))
212211simprd 485 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))))
213132adantr 468 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
214140a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
2155, 213, 11, 214, 36offval2 7153 . . . . . . . . . . . 12 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘))))
216215oveq2d 6899 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))))
217 cnfldadd 19978 . . . . . . . . . . . 12 + = (+g‘ℂfld)
218 cnfldmul 19979 . . . . . . . . . . . 12 · = (.r‘ℂfld)
2192a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Ring)
220110fmpttd 6616 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)):𝐴⟶ℂ)
221220, 5, 16fdmfifsupp 8533 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) finSupp 0)
22253, 1, 217, 218, 219, 5, 144, 110, 221gsummulc2 18828 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
223 fss 6278 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
22410, 119, 223sylancl 576 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℝ)
22510, 5, 16fdmfifsupp 8533 . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0)
2261, 4, 5, 9, 224, 225gsumsubgcl 18540 . . . . . . . . . . . . . 14 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ)
227226recnd 10362 . . . . . . . . . . . . 13 (𝜑 → (ℂfld Σg 𝐹) ∈ ℂ)
228227, 24, 25divrec2d 11099 . . . . . . . . . . . 12 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)))
229109oveq2d 6899 . . . . . . . . . . . 12 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
230228, 229eqtr2d 2852 . . . . . . . . . . 11 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
231216, 222, 2303eqtrd 2855 . . . . . . . . . 10 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
232231, 153oveq12d 6901 . . . . . . . . 9 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1))
233226, 23nndivred 11366 . . . . . . . . . . 11 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ)
234233recnd 10362 . . . . . . . . . 10 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℂ)
235234div1d 11087 . . . . . . . . 9 (𝜑 → (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
236232, 235eqtrd 2851 . . . . . . . 8 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
237236fveq2d 6421 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
238 fveq2 6417 . . . . . . . . . 10 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
239238negeqd 10569 . . . . . . . . 9 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
240 negex 10573 . . . . . . . . 9 -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V
241239, 180, 240fvmpt 6512 . . . . . . . 8 (((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
242116, 241syl 17 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
243237, 242eqtrd 2851 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
24453, 1, 217, 218, 219, 5, 144, 31, 17gsummulc2 18828 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
245 negex 10573 . . . . . . . . . . . 12 -(log‘(𝐹𝑘)) ∈ V
246245a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
247 eqidd 2818 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
248 fveq2 6417 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
249248negeqd 10569 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
25011, 36, 247, 249fmptco 6628 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
2515, 213, 246, 214, 250offval2 7153 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘)))))
252251oveq2d 6899 . . . . . . . . 9 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))))
25319, 24, 25divrec2d 11099 . . . . . . . . 9 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
254244, 252, 2533eqtr4d 2861 . . . . . . . 8 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
255254, 153oveq12d 6901 . . . . . . 7 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1))
256118recnd 10362 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℂ)
257256div1d 11087 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
258255, 257eqtrd 2851 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
259212, 243, 2583brtr3d 4886 . . . . 5 (𝜑 → -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
260117, 118, 259lenegcon1d 10903 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
261108, 260eqbrtrrd 4879 . . 3 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
262132, 105remulcld 10364 . . . 4 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ)
263 efle 15087 . . . 4 ((((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ ∧ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
264262, 117, 263syl2anc 575 . . 3 (𝜑 → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
265261, 264mpbid 223 . 2 (𝜑 → (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
266100rpcnd 12107 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ ℂ)
267100rpne0d 12110 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0)
268266, 267, 144cxpefd 24694 . 2 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))))
269116reeflogd 24606 . . 3 (𝜑 → (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
270269eqcomd 2823 . 2 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
271265, 268, 2703brtr4d 4887 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2989  Vcvv 3402  cdif 3777  wss 3780  c0 4127  {csn 4381   class class class wbr 4855  cmpt 4934   × cxp 5322  cres 5326  ccom 5328  wf 6106  1-1-ontowf1o 6109  cfv 6110  (class class class)co 6883  𝑓 cof 7134  Fincfn 8201  cc 10228  cr 10229  0cc0 10230  1c1 10231   + caddc 10233   · cmul 10235  +∞cpnf 10365   < clt 10368  cle 10369  cmin 10560  -cneg 10561   / cdiv 10978  cn 11314  cz 11662  +crp 12065  (,)cioo 12412  [,)cico 12414  [,]cicc 12415  chash 13356  Σcsu 14658  expce 15031  Basecbs 16087  s cress 16088  0gc0g 16324   Σg cgsu 16325  Mndcmnd 17518   MndHom cmhm 17557  SubMndcsubmnd 17558  .gcmg 17764  SubGrpcsubg 17809   GrpHom cghm 17878   GrpIso cgim 17920  CMndccmn 18413  Abelcabl 18414  mulGrpcmgp 18710  Ringcrg 18768  CRingccrg 18769  DivRingcdr 18970  SubRingcsubrg 18999  fldccnfld 19973  fldcrefld 20178  logclog 24537  𝑐ccxp 24538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-inf2 8794  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307  ax-pre-sup 10308  ax-addf 10309  ax-mulf 10310
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-isom 6119  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-of 7136  df-om 7305  df-1st 7407  df-2nd 7408  df-supp 7539  df-tpos 7596  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-1o 7805  df-2o 7806  df-oadd 7809  df-er 7988  df-map 8103  df-pm 8104  df-ixp 8155  df-en 8202  df-dom 8203  df-sdom 8204  df-fin 8205  df-fsupp 8524  df-fi 8565  df-sup 8596  df-inf 8597  df-oi 8663  df-card 9057  df-cda 9284  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-div 10979  df-nn 11315  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11579  df-z 11663  df-dec 11779  df-uz 11924  df-q 12027  df-rp 12066  df-xneg 12181  df-xadd 12182  df-xmul 12183  df-ioo 12416  df-ioc 12417  df-ico 12418  df-icc 12419  df-fz 12569  df-fzo 12709  df-fl 12836  df-mod 12912  df-seq 13044  df-exp 13103  df-fac 13300  df-bc 13329  df-hash 13357  df-shft 14049  df-cj 14081  df-re 14082  df-im 14083  df-sqrt 14217  df-abs 14218  df-limsup 14444  df-clim 14461  df-rlim 14462  df-sum 14659  df-ef 15037  df-sin 15039  df-cos 15040  df-pi 15042  df-struct 16089  df-ndx 16090  df-slot 16091  df-base 16093  df-sets 16094  df-ress 16095  df-plusg 16185  df-mulr 16186  df-starv 16187  df-sca 16188  df-vsca 16189  df-ip 16190  df-tset 16191  df-ple 16192  df-ds 16194  df-unif 16195  df-hom 16196  df-cco 16197  df-rest 16307  df-topn 16308  df-0g 16326  df-gsum 16327  df-topgen 16328  df-pt 16329  df-prds 16332  df-xrs 16386  df-qtop 16391  df-imas 16392  df-xps 16394  df-mre 16470  df-mrc 16471  df-acs 16473  df-mgm 17466  df-sgrp 17508  df-mnd 17519  df-mhm 17559  df-submnd 17560  df-grp 17649  df-minusg 17650  df-mulg 17765  df-subg 17812  df-ghm 17879  df-gim 17922  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-drng 18972  df-subrg 19001  df-psmet 19965  df-xmet 19966  df-met 19967  df-bl 19968  df-mopn 19969  df-fbas 19970  df-fg 19971  df-cnfld 19974  df-refld 20179  df-top 20932  df-topon 20949  df-topsp 20971  df-bases 20984  df-cld 21057  df-ntr 21058  df-cls 21059  df-nei 21136  df-lp 21174  df-perf 21175  df-cn 21265  df-cnp 21266  df-haus 21353  df-cmp 21424  df-tx 21599  df-hmeo 21792  df-fil 21883  df-fm 21975  df-flim 21976  df-flf 21977  df-xms 22358  df-ms 22359  df-tms 22360  df-cncf 22914  df-limc 23866  df-dv 23867  df-log 24539  df-cxp 24540
This theorem is referenced by:  amgm  24953  amgm2d  39018  amgm3d  39019  amgm4d  39020
  Copyright terms: Public domain W3C validator