MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 26044
Description: Lemma for amgm 26045. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
amgm.2 (𝜑𝐴 ∈ Fin)
amgm.3 (𝜑𝐴 ≠ ∅)
amgm.4 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlem (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlem
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 20534 . . . . . . . 8 0 = (0g‘ℂfld)
2 cnring 20532 . . . . . . . . 9 fld ∈ Ring
3 ringabl 19734 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (𝜑 → ℂfld ∈ Abel)
5 amgm.2 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 resubdrg 20725 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
76simpli 483 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
8 subrgsubg 19945 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
97, 8mp1i 13 . . . . . . . 8 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
10 amgm.4 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
1110ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
1211relogcld 25683 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
1312renegcld 11332 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
1413fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
15 c0ex 10900 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
1714, 5, 16fdmfifsupp 9068 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 19436 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℝ)
1918recnd 10934 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℂ)
20 amgm.3 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
21 hashnncl 14009 . . . . . . . . 9 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
225, 21syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
2320, 22mpbird 256 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ)
2423nncnd 11919 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
2523nnne0d 11953 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2619, 24, 25divnegd 11694 . . . . 5 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
2712recnd 10934 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
285, 27gsumfsum 20577 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
2927negnegd 11253 . . . . . . . . . 10 ((𝜑𝑘𝐴) → --(log‘(𝐹𝑘)) = (log‘(𝐹𝑘)))
3029sumeq2dv 15343 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
3113recnd 10934 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
325, 31fsumneg 15427 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3328, 30, 323eqtr2rd 2785 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘(𝐹𝑘)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
345, 31gsumfsum 20577 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3534negeqd 11145 . . . . . . . 8 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3610feqmptd 6819 . . . . . . . . . 10 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
37 relogf1o 25627 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6700 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . . . . 12 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6819 . . . . . . . . . . 11 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
41 fvres 6775 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
4241mpteq2ia 5173 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
4340, 42eqtrdi 2795 . . . . . . . . . 10 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
44 fveq2 6756 . . . . . . . . . 10 (𝑥 = (𝐹𝑘) → (log‘𝑥) = (log‘(𝐹𝑘)))
4511, 36, 43, 44fmptco 6983 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹) = (𝑘𝐴 ↦ (log‘(𝐹𝑘))))
4645oveq2d 7271 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
4733, 35, 463eqtr4d 2788 . . . . . . 7 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrp‘ℂfld)
4948oveq1i 7265 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5049rpmsubg 20574 . . . . . . . . . . . . 13 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
51 subgsubm 18692 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
53 cnfldbas 20514 . . . . . . . . . . . . . . 15 ℂ = (Base‘ℂfld)
54 cndrng 20539 . . . . . . . . . . . . . . 15 fld ∈ DivRing
5553, 1, 54drngui 19912 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (Unit‘ℂfld)
5655, 48unitsubm 19827 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
57 eqid 2738 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5857subsubm 18370 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
6052, 59mpbi 229 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
6160simpli 483 . . . . . . . . . 10 + ∈ (SubMnd‘𝑀)
62 eqid 2738 . . . . . . . . . . 11 (𝑀s+) = (𝑀s+)
6362submbas 18368 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
6461, 63ax-mp 5 . . . . . . . . 9 + = (Base‘(𝑀s+))
65 cnfld1 20535 . . . . . . . . . . . 12 1 = (1r‘ℂfld)
6648, 65ringidval 19654 . . . . . . . . . . 11 1 = (0g𝑀)
6762, 66subm0 18369 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀s+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0g‘(𝑀s+))
69 cncrng 20531 . . . . . . . . . . 11 fld ∈ CRing
7048crngmgp 19706 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (𝜑𝑀 ∈ CMnd)
7262submmnd 18367 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑀s+) ∈ Mnd)
7462subcmn 19353 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
7571, 73, 74syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑀s+) ∈ CMnd)
76 df-refld 20722 . . . . . . . . . . . 12 fld = (ℂflds ℝ)
7776subrgring 19942 . . . . . . . . . . 11 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 fld ∈ Ring
79 ringmnd 19708 . . . . . . . . . 10 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (𝜑 → ℝfld ∈ Mnd)
8148oveq1i 7265 . . . . . . . . . . . 12 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
8281reloggim 25659 . . . . . . . . . . 11 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
83 gimghm 18795 . . . . . . . . . . 11 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
85 ghmmhm 18759 . . . . . . . . . 10 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
87 1ex 10902 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ V)
8910, 5, 88fdmfifsupp 9068 . . . . . . . . 9 (𝜑𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 19454 . . . . . . . 8 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
91 subgsubm 18692 . . . . . . . . . 10 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
929, 91syl 17 . . . . . . . . 9 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
93 fco 6608 . . . . . . . . . 10 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
9439, 10, 93syl2anc 583 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
955, 92, 94, 76gsumsubm 18388 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
975, 96, 10, 62gsumsubm 18388 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
9897fveq2d 6760 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
9990, 95, 983eqtr4d 2788 . . . . . . 7 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 19435 . . . . . . . 8 (𝜑 → (𝑀 Σg 𝐹) ∈ ℝ+)
101100fvresd 6776 . . . . . . 7 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
10247, 99, 1013eqtrd 2782 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (log‘(𝑀 Σg 𝐹)))
103102oveq1d 7270 . . . . 5 (𝜑 → (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)))
104100relogcld 25683 . . . . . . 7 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℝ)
105104recnd 10934 . . . . . 6 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℂ)
106105, 24, 25divrec2d 11685 . . . . 5 (𝜑 → ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10726, 103, 1063eqtrd 2782 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10836oveq2d 7271 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
10911rpcnd 12703 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1105, 109gsumfsum 20577 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
111108, 110eqtrd 2778 . . . . . . . 8 (𝜑 → (ℂfld Σg 𝐹) = Σ𝑘𝐴 (𝐹𝑘))
1125, 20, 11fsumrpcl 15377 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℝ+)
113111, 112eqeltrd 2839 . . . . . . 7 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ+)
11423nnrpd 12699 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℝ+)
115113, 114rpdivcld 12718 . . . . . 6 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+)
116115relogcld 25683 . . . . 5 (𝜑 → (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ)
11718, 23nndivred 11957 . . . . 5 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℝ)
118 rpssre 12666 . . . . . . . . 9 + ⊆ ℝ
119118a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
120 relogcl 25636 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (log‘𝑤) ∈ ℝ)
121120adantl 481 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
122121renegcld 11332 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
123122fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
124 ioorp 13086 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2830 . . . . . . . . . . 11 (𝑎 ∈ (0(,)+∞) ↔ 𝑎 ∈ ℝ+)
126124eleq2i 2830 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 13081 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
128125, 126, 127syl2anbr 598 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
129128, 124sseqtrdi 3967 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
130129adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
13123nnrecred 11954 . . . . . . . . . 10 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
132114rpreccld 12711 . . . . . . . . . . 11 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
133132rpge0d 12705 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (♯‘𝐴)))
134 elrege0 13115 . . . . . . . . . 10 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (♯‘𝐴))))
135131, 133, 134sylanbrc 582 . . . . . . . . 9 (𝜑 → (1 / (♯‘𝐴)) ∈ (0[,)+∞))
136 fconst6g 6647 . . . . . . . . 9 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
138 0lt1 11427 . . . . . . . . 9 0 < 1
139 fconstmpt 5640 . . . . . . . . . . 11 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
140139oveq2i 7266 . . . . . . . . . 10 (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
141 ringmnd 19708 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Mnd)
143131recnd 10934 . . . . . . . . . . . 12 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
144 eqid 2738 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
14553, 144gsumconst 19450 . . . . . . . . . . . 12 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
146142, 5, 143, 145syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
14723nnzd 12354 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
148 cnfldmulg 20542 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
149147, 143, 148syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
15024, 25recidd 11676 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
151146, 149, 1503eqtrd 2782 . . . . . . . . . 10 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = 1)
152140, 151syl5eq 2791 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
153138, 152breqtrrid 5108 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))
154 logccv 25723 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1551543adant1 1128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
156 ioossre 13069 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℝ
157 simp3 1136 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
158156, 157sselid 3915 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
159 simp21 1204 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
160159relogcld 25683 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
161158, 160remulcld 10936 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
162 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 11215 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
164162, 158, 163sylancr 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
165 simp22 1205 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
166165relogcld 25683 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
167164, 166remulcld 10936 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
168161, 167readdcld 10935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
169 simp1 1134 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑)
170 ioossicc 13094 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ (0[,]1)
171170, 157sselid 3915 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1))
172119, 130cvxcl 26039 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1370 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
174173relogcld 25683 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
175168, 174ltnegd 11483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
176155, 175mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
177 fveq2 6756 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
178177negeqd 11145 . . . . . . . . . . . 12 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
179 eqid 2738 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
180 negex 11149 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
181178, 179, 180fvmpt 6857 . . . . . . . . . . 11 (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
183 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
184183negeqd 11145 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
185 negex 11149 . . . . . . . . . . . . . . . 16 -(log‘𝑥) ∈ V
186184, 179, 185fvmpt 6857 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
188187oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
189158recnd 10934 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
190160recnd 10934 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
191189, 190mulneg2d 11359 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
192188, 191eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
193 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
194193negeqd 11145 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
195 negex 11149 . . . . . . . . . . . . . . . 16 -(log‘𝑦) ∈ V
196194, 179, 195fvmpt 6857 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
198197oveq2d 7271 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
199164recnd 10934 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
200166recnd 10934 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
201199, 200mulneg2d 11359 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
202198, 201eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
203192, 202oveq12d 7273 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
204161recnd 10934 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
205167recnd 10934 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
206204, 205negdid 11275 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
207203, 206eqtr4d 2781 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
208176, 182, 2073brtr4d 5102 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
209119, 123, 130, 208scvxcvx 26040 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 26043 . . . . . . 7 (𝜑 → (((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))))
211210simprd 495 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))))
212131adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
2145, 212, 11, 213, 36offval2 7531 . . . . . . . . . . . 12 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘))))
215214oveq2d 7271 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))))
216 cnfldadd 20515 . . . . . . . . . . . 12 + = (+g‘ℂfld)
217 cnfldmul 20516 . . . . . . . . . . . 12 · = (.r‘ℂfld)
2182a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Ring)
219109fmpttd 6971 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)):𝐴⟶ℂ)
220219, 5, 16fdmfifsupp 9068 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) finSupp 0)
22153, 1, 216, 217, 218, 5, 143, 109, 220gsummulc2 19761 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
222 fss 6601 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
22310, 118, 222sylancl 585 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℝ)
22410, 5, 16fdmfifsupp 9068 . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0)
2251, 4, 5, 9, 223, 224gsumsubgcl 19436 . . . . . . . . . . . . . 14 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ)
226225recnd 10934 . . . . . . . . . . . . 13 (𝜑 → (ℂfld Σg 𝐹) ∈ ℂ)
227226, 24, 25divrec2d 11685 . . . . . . . . . . . 12 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)))
228108oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
229227, 228eqtr2d 2779 . . . . . . . . . . 11 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
230215, 221, 2293eqtrd 2782 . . . . . . . . . 10 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
231230, 152oveq12d 7273 . . . . . . . . 9 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1))
232225, 23nndivred 11957 . . . . . . . . . . 11 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ)
233232recnd 10934 . . . . . . . . . 10 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℂ)
234233div1d 11673 . . . . . . . . 9 (𝜑 → (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
235231, 234eqtrd 2778 . . . . . . . 8 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
236235fveq2d 6760 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
237 fveq2 6756 . . . . . . . . . 10 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
238237negeqd 11145 . . . . . . . . 9 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
239 negex 11149 . . . . . . . . 9 -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V
240238, 179, 239fvmpt 6857 . . . . . . . 8 (((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
241115, 240syl 17 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
242236, 241eqtrd 2778 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
24353, 1, 216, 217, 218, 5, 143, 31, 17gsummulc2 19761 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
244 negex 11149 . . . . . . . . . . . 12 -(log‘(𝐹𝑘)) ∈ V
245244a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
246 eqidd 2739 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
247 fveq2 6756 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
248247negeqd 11145 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
24911, 36, 246, 248fmptco 6983 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
2505, 212, 245, 213, 249offval2 7531 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘)))))
251250oveq2d 7271 . . . . . . . . 9 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))))
25219, 24, 25divrec2d 11685 . . . . . . . . 9 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
253243, 251, 2523eqtr4d 2788 . . . . . . . 8 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
254253, 152oveq12d 7273 . . . . . . 7 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1))
255117recnd 10934 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℂ)
256255div1d 11673 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
257254, 256eqtrd 2778 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
258211, 242, 2573brtr3d 5101 . . . . 5 (𝜑 → -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
259116, 117, 258lenegcon1d 11487 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
260107, 259eqbrtrrd 5094 . . 3 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
261131, 104remulcld 10936 . . . 4 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ)
262 efle 15755 . . . 4 ((((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ ∧ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
263261, 116, 262syl2anc 583 . . 3 (𝜑 → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
264260, 263mpbid 231 . 2 (𝜑 → (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
265100rpcnd 12703 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ ℂ)
266100rpne0d 12706 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0)
267265, 266, 143cxpefd 25772 . 2 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))))
268115reeflogd 25684 . . 3 (𝜑 → (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
269268eqcomd 2744 . 2 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
270264, 267, 2693brtr4d 5102 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  cres 5582  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  cz 12249  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  chash 13972  Σcsu 15325  expce 15699  Basecbs 16840  s cress 16867  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343  SubMndcsubmnd 18344  .gcmg 18615  SubGrpcsubg 18664   GrpHom cghm 18746   GrpIso cgim 18788  CMndccmn 19301  Abelcabl 19302  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  DivRingcdr 19906  SubRingcsubrg 19935  fldccnfld 20510  fldcrefld 20721  logclog 25615  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-refld 20722  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  amgm  26045  amgm2d  41698  amgm3d  41699  amgm4d  41700
  Copyright terms: Public domain W3C validator