MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 26484
Description: Lemma for amgm 26485. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrpβ€˜β„‚fld)
amgm.2 (πœ‘ β†’ 𝐴 ∈ Fin)
amgm.3 (πœ‘ β†’ 𝐴 β‰  βˆ…)
amgm.4 (πœ‘ β†’ 𝐹:π΄βŸΆβ„+)
Assertion
Ref Expression
amgmlem (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))

Proof of Theorem amgmlem
Dummy variables π‘Ž 𝑏 π‘˜ 𝑠 𝑒 𝑣 𝑀 π‘₯ 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 20962 . . . . . . . 8 0 = (0gβ€˜β„‚fld)
2 cnring 20960 . . . . . . . . 9 β„‚fld ∈ Ring
3 ringabl 20092 . . . . . . . . 9 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (πœ‘ β†’ β„‚fld ∈ Abel)
5 amgm.2 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ Fin)
6 resubdrg 21153 . . . . . . . . . 10 (ℝ ∈ (SubRingβ€˜β„‚fld) ∧ ℝfld ∈ DivRing)
76simpli 485 . . . . . . . . 9 ℝ ∈ (SubRingβ€˜β„‚fld)
8 subrgsubg 20362 . . . . . . . . 9 (ℝ ∈ (SubRingβ€˜β„‚fld) β†’ ℝ ∈ (SubGrpβ€˜β„‚fld))
97, 8mp1i 13 . . . . . . . 8 (πœ‘ β†’ ℝ ∈ (SubGrpβ€˜β„‚fld))
10 amgm.4 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐹:π΄βŸΆβ„+)
1110ffvelcdmda 7084 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (πΉβ€˜π‘˜) ∈ ℝ+)
1211relogcld 26123 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (logβ€˜(πΉβ€˜π‘˜)) ∈ ℝ)
1312renegcld 11638 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ ℝ)
1413fmpttd 7112 . . . . . . . 8 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))):π΄βŸΆβ„)
15 c0ex 11205 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (πœ‘ β†’ 0 ∈ V)
1714, 5, 16fdmfifsupp 9370 . . . . . . . 8 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 19783 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) ∈ ℝ)
1918recnd 11239 . . . . . 6 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) ∈ β„‚)
20 amgm.3 . . . . . . . 8 (πœ‘ β†’ 𝐴 β‰  βˆ…)
21 hashnncl 14323 . . . . . . . . 9 (𝐴 ∈ Fin β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
225, 21syl 17 . . . . . . . 8 (πœ‘ β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
2320, 22mpbird 257 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„•)
2423nncnd 12225 . . . . . 6 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„‚)
2523nnne0d 12259 . . . . . 6 (πœ‘ β†’ (β™―β€˜π΄) β‰  0)
2619, 24, 25divnegd 12000 . . . . 5 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = (-(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
2712recnd 11239 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (logβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
285, 27gsumfsum 21005 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))) = Ξ£π‘˜ ∈ 𝐴 (logβ€˜(πΉβ€˜π‘˜)))
2927negnegd 11559 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ --(logβ€˜(πΉβ€˜π‘˜)) = (logβ€˜(πΉβ€˜π‘˜)))
3029sumeq2dv 15646 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 --(logβ€˜(πΉβ€˜π‘˜)) = Ξ£π‘˜ ∈ 𝐴 (logβ€˜(πΉβ€˜π‘˜)))
3113recnd 11239 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
325, 31fsumneg 15730 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 --(logβ€˜(πΉβ€˜π‘˜)) = -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3328, 30, 323eqtr2rd 2780 . . . . . . . 8 (πœ‘ β†’ -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))))
345, 31gsumfsum 21005 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3534negeqd 11451 . . . . . . . 8 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3610feqmptd 6958 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 = (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))
37 relogf1o 26067 . . . . . . . . . . . . 13 (log β†Ύ ℝ+):ℝ+–1-1-onto→ℝ
38 f1of 6831 . . . . . . . . . . . . 13 ((log β†Ύ ℝ+):ℝ+–1-1-onto→ℝ β†’ (log β†Ύ ℝ+):ℝ+βŸΆβ„)
3937, 38mp1i 13 . . . . . . . . . . . 12 (πœ‘ β†’ (log β†Ύ ℝ+):ℝ+βŸΆβ„)
4039feqmptd 6958 . . . . . . . . . . 11 (πœ‘ β†’ (log β†Ύ ℝ+) = (π‘₯ ∈ ℝ+ ↦ ((log β†Ύ ℝ+)β€˜π‘₯)))
41 fvres 6908 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ+ β†’ ((log β†Ύ ℝ+)β€˜π‘₯) = (logβ€˜π‘₯))
4241mpteq2ia 5251 . . . . . . . . . . 11 (π‘₯ ∈ ℝ+ ↦ ((log β†Ύ ℝ+)β€˜π‘₯)) = (π‘₯ ∈ ℝ+ ↦ (logβ€˜π‘₯))
4340, 42eqtrdi 2789 . . . . . . . . . 10 (πœ‘ β†’ (log β†Ύ ℝ+) = (π‘₯ ∈ ℝ+ ↦ (logβ€˜π‘₯)))
44 fveq2 6889 . . . . . . . . . 10 (π‘₯ = (πΉβ€˜π‘˜) β†’ (logβ€˜π‘₯) = (logβ€˜(πΉβ€˜π‘˜)))
4511, 36, 43, 44fmptco 7124 . . . . . . . . 9 (πœ‘ β†’ ((log β†Ύ ℝ+) ∘ 𝐹) = (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜))))
4645oveq2d 7422 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))))
4733, 35, 463eqtr4d 2783 . . . . . . 7 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrpβ€˜β„‚fld)
4948oveq1i 7416 . . . . . . . . . . . . . 14 (𝑀 β†Ύs (β„‚ βˆ– {0})) = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))
5049rpmsubg 21002 . . . . . . . . . . . . 13 ℝ+ ∈ (SubGrpβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0})))
51 subgsubm 19023 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrpβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) β†’ ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0})))
53 cnfldbas 20941 . . . . . . . . . . . . . . 15 β„‚ = (Baseβ€˜β„‚fld)
54 cndrng 20967 . . . . . . . . . . . . . . 15 β„‚fld ∈ DivRing
5553, 1, 54drngui 20314 . . . . . . . . . . . . . 14 (β„‚ βˆ– {0}) = (Unitβ€˜β„‚fld)
5655, 48unitsubm 20193 . . . . . . . . . . . . 13 (β„‚fld ∈ Ring β†’ (β„‚ βˆ– {0}) ∈ (SubMndβ€˜π‘€))
57 eqid 2733 . . . . . . . . . . . . . 14 (𝑀 β†Ύs (β„‚ βˆ– {0})) = (𝑀 β†Ύs (β„‚ βˆ– {0}))
5857subsubm 18694 . . . . . . . . . . . . 13 ((β„‚ βˆ– {0}) ∈ (SubMndβ€˜π‘€) β†’ (ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) ↔ (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) ↔ (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0})))
6052, 59mpbi 229 . . . . . . . . . . 11 (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0}))
6160simpli 485 . . . . . . . . . 10 ℝ+ ∈ (SubMndβ€˜π‘€)
62 eqid 2733 . . . . . . . . . . 11 (𝑀 β†Ύs ℝ+) = (𝑀 β†Ύs ℝ+)
6362submbas 18692 . . . . . . . . . 10 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ ℝ+ = (Baseβ€˜(𝑀 β†Ύs ℝ+)))
6461, 63ax-mp 5 . . . . . . . . 9 ℝ+ = (Baseβ€˜(𝑀 β†Ύs ℝ+))
65 cnfld1 20963 . . . . . . . . . . . 12 1 = (1rβ€˜β„‚fld)
6648, 65ringidval 20001 . . . . . . . . . . 11 1 = (0gβ€˜π‘€)
6762, 66subm0 18693 . . . . . . . . . 10 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ 1 = (0gβ€˜(𝑀 β†Ύs ℝ+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0gβ€˜(𝑀 β†Ύs ℝ+))
69 cncrng 20959 . . . . . . . . . . 11 β„‚fld ∈ CRing
7048crngmgp 20058 . . . . . . . . . . 11 (β„‚fld ∈ CRing β†’ 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ CMnd)
7262submmnd 18691 . . . . . . . . . . 11 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ (𝑀 β†Ύs ℝ+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ (𝑀 β†Ύs ℝ+) ∈ Mnd)
7462subcmn 19700 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀 β†Ύs ℝ+) ∈ Mnd) β†’ (𝑀 β†Ύs ℝ+) ∈ CMnd)
7571, 73, 74syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ (𝑀 β†Ύs ℝ+) ∈ CMnd)
76 df-refld 21150 . . . . . . . . . . . 12 ℝfld = (β„‚fld β†Ύs ℝ)
7776subrgring 20359 . . . . . . . . . . 11 (ℝ ∈ (SubRingβ€˜β„‚fld) β†’ ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 ℝfld ∈ Ring
79 ringmnd 20060 . . . . . . . . . 10 (ℝfld ∈ Ring β†’ ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (πœ‘ β†’ ℝfld ∈ Mnd)
8148oveq1i 7416 . . . . . . . . . . . 12 (𝑀 β†Ύs ℝ+) = ((mulGrpβ€˜β„‚fld) β†Ύs ℝ+)
8281reloggim 26099 . . . . . . . . . . 11 (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpIso ℝfld)
83 gimghm 19133 . . . . . . . . . . 11 ((log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpIso ℝfld) β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld)
85 ghmmhm 19097 . . . . . . . . . 10 ((log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld) β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (πœ‘ β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) MndHom ℝfld))
87 1ex 11207 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 1 ∈ V)
8910, 5, 88fdmfifsupp 9370 . . . . . . . . 9 (πœ‘ β†’ 𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 19801 . . . . . . . 8 (πœ‘ β†’ (ℝfld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = ((log β†Ύ ℝ+)β€˜((𝑀 β†Ύs ℝ+) Ξ£g 𝐹)))
91 subgsubm 19023 . . . . . . . . . 10 (ℝ ∈ (SubGrpβ€˜β„‚fld) β†’ ℝ ∈ (SubMndβ€˜β„‚fld))
929, 91syl 17 . . . . . . . . 9 (πœ‘ β†’ ℝ ∈ (SubMndβ€˜β„‚fld))
93 fco 6739 . . . . . . . . . 10 (((log β†Ύ ℝ+):ℝ+βŸΆβ„ ∧ 𝐹:π΄βŸΆβ„+) β†’ ((log β†Ύ ℝ+) ∘ 𝐹):π΄βŸΆβ„)
9439, 10, 93syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ ((log β†Ύ ℝ+) ∘ 𝐹):π΄βŸΆβ„)
955, 92, 94, 76gsumsubm 18713 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = (ℝfld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ+ ∈ (SubMndβ€˜π‘€))
975, 96, 10, 62gsumsubm 18713 . . . . . . . . 9 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) = ((𝑀 β†Ύs ℝ+) Ξ£g 𝐹))
9897fveq2d 6893 . . . . . . . 8 (πœ‘ β†’ ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)) = ((log β†Ύ ℝ+)β€˜((𝑀 β†Ύs ℝ+) Ξ£g 𝐹)))
9990, 95, 983eqtr4d 2783 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 19782 . . . . . . . 8 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) ∈ ℝ+)
101100fvresd 6909 . . . . . . 7 (πœ‘ β†’ ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)) = (logβ€˜(𝑀 Ξ£g 𝐹)))
10247, 99, 1013eqtrd 2777 . . . . . 6 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = (logβ€˜(𝑀 Ξ£g 𝐹)))
103102oveq1d 7421 . . . . 5 (πœ‘ β†’ (-(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((logβ€˜(𝑀 Ξ£g 𝐹)) / (β™―β€˜π΄)))
104100relogcld 26123 . . . . . . 7 (πœ‘ β†’ (logβ€˜(𝑀 Ξ£g 𝐹)) ∈ ℝ)
105104recnd 11239 . . . . . 6 (πœ‘ β†’ (logβ€˜(𝑀 Ξ£g 𝐹)) ∈ β„‚)
106105, 24, 25divrec2d 11991 . . . . 5 (πœ‘ β†’ ((logβ€˜(𝑀 Ξ£g 𝐹)) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))))
10726, 103, 1063eqtrd 2777 . . . 4 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))))
10836oveq2d 7422 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜))))
10911rpcnd 13015 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
1105, 109gsumfsum 21005 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜))) = Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜))
111108, 110eqtrd 2773 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) = Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜))
1125, 20, 11fsumrpcl 15680 . . . . . . . 8 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜) ∈ ℝ+)
113111, 112eqeltrd 2834 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ ℝ+)
11423nnrpd 13011 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π΄) ∈ ℝ+)
115113, 114rpdivcld 13030 . . . . . 6 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ+)
116115relogcld 26123 . . . . 5 (πœ‘ β†’ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ ℝ)
11718, 23nndivred 12263 . . . . 5 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ∈ ℝ)
118 rpssre 12978 . . . . . . . . 9 ℝ+ βŠ† ℝ
119118a1i 11 . . . . . . . 8 (πœ‘ β†’ ℝ+ βŠ† ℝ)
120 relogcl 26076 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ β†’ (logβ€˜π‘€) ∈ ℝ)
121120adantl 483 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ ℝ+) β†’ (logβ€˜π‘€) ∈ ℝ)
122121renegcld 11638 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ ℝ+) β†’ -(logβ€˜π‘€) ∈ ℝ)
123122fmpttd 7112 . . . . . . . 8 (πœ‘ β†’ (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)):ℝ+βŸΆβ„)
124 ioorp 13399 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2826 . . . . . . . . . . 11 (π‘Ž ∈ (0(,)+∞) ↔ π‘Ž ∈ ℝ+)
126124eleq2i 2826 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 13394 . . . . . . . . . . 11 ((π‘Ž ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) β†’ (π‘Ž[,]𝑏) βŠ† (0(,)+∞))
128125, 126, 127syl2anbr 600 . . . . . . . . . 10 ((π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+) β†’ (π‘Ž[,]𝑏) βŠ† (0(,)+∞))
129128, 124sseqtrdi 4032 . . . . . . . . 9 ((π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+) β†’ (π‘Ž[,]𝑏) βŠ† ℝ+)
130129adantl 483 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) β†’ (π‘Ž[,]𝑏) βŠ† ℝ+)
13123nnrecred 12260 . . . . . . . . . 10 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ ℝ)
132114rpreccld 13023 . . . . . . . . . . 11 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ ℝ+)
133132rpge0d 13017 . . . . . . . . . 10 (πœ‘ β†’ 0 ≀ (1 / (β™―β€˜π΄)))
134 elrege0 13428 . . . . . . . . . 10 ((1 / (β™―β€˜π΄)) ∈ (0[,)+∞) ↔ ((1 / (β™―β€˜π΄)) ∈ ℝ ∧ 0 ≀ (1 / (β™―β€˜π΄))))
135131, 133, 134sylanbrc 584 . . . . . . . . 9 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ (0[,)+∞))
136 fconst6g 6778 . . . . . . . . 9 ((1 / (β™―β€˜π΄)) ∈ (0[,)+∞) β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}):𝐴⟢(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}):𝐴⟢(0[,)+∞))
138 0lt1 11733 . . . . . . . . 9 0 < 1
139 fconstmpt 5737 . . . . . . . . . . 11 (𝐴 Γ— {(1 / (β™―β€˜π΄))}) = (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))
140139oveq2i 7417 . . . . . . . . . 10 (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄))))
141 ringmnd 20060 . . . . . . . . . . . . 13 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (πœ‘ β†’ β„‚fld ∈ Mnd)
143131recnd 11239 . . . . . . . . . . . 12 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ β„‚)
144 eqid 2733 . . . . . . . . . . . . 13 (.gβ€˜β„‚fld) = (.gβ€˜β„‚fld)
14553, 144gsumconst 19797 . . . . . . . . . . . 12 ((β„‚fld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (β™―β€˜π΄)) ∈ β„‚) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))))
146142, 5, 143, 145syl3anc 1372 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))))
14723nnzd 12582 . . . . . . . . . . . 12 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„€)
148 cnfldmulg 20970 . . . . . . . . . . . 12 (((β™―β€˜π΄) ∈ β„€ ∧ (1 / (β™―β€˜π΄)) ∈ β„‚) β†’ ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))) = ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))))
149147, 143, 148syl2anc 585 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))) = ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))))
15024, 25recidd 11982 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))) = 1)
151146, 149, 1503eqtrd 2777 . . . . . . . . . 10 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = 1)
152140, 151eqtrid 2785 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})) = 1)
153138, 152breqtrrid 5186 . . . . . . . 8 (πœ‘ β†’ 0 < (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))
154 logccv 26163 . . . . . . . . . . . 12 (((π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
1551543adant1 1131 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
156 ioossre 13382 . . . . . . . . . . . . . . 15 (0(,)1) βŠ† ℝ
157 simp3 1139 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ (0(,)1))
158156, 157sselid 3980 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ ℝ)
159 simp21 1207 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ π‘₯ ∈ ℝ+)
160159relogcld 26123 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘₯) ∈ ℝ)
161158, 160remulcld 11241 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· (logβ€˜π‘₯)) ∈ ℝ)
162 1re 11211 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 11521 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑑 ∈ ℝ) β†’ (1 βˆ’ 𝑑) ∈ ℝ)
164162, 158, 163sylancr 588 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (1 βˆ’ 𝑑) ∈ ℝ)
165 simp22 1208 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑦 ∈ ℝ+)
166165relogcld 26123 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘¦) ∈ ℝ)
167164, 166remulcld 11241 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)) ∈ ℝ)
168161, 167readdcld 11240 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) ∈ ℝ)
169 simp1 1137 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ πœ‘)
170 ioossicc 13407 . . . . . . . . . . . . . . 15 (0(,)1) βŠ† (0[,]1)
171170, 157sselid 3980 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ (0[,]1))
172119, 130cvxcl 26479 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑑 ∈ (0[,]1))) β†’ ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1373 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+)
174173relogcld 26123 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ∈ ℝ)
175168, 174ltnegd 11789 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ↔ -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))))
176155, 175mpbid 231 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
177 fveq2 6889 . . . . . . . . . . . . 13 (𝑀 = ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) β†’ (logβ€˜π‘€) = (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
178177negeqd 11451 . . . . . . . . . . . 12 (𝑀 = ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) β†’ -(logβ€˜π‘€) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
179 eqid 2733 . . . . . . . . . . . 12 (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) = (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))
180 negex 11455 . . . . . . . . . . . 12 -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ∈ V
181178, 179, 180fvmpt 6996 . . . . . . . . . . 11 (((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
183 fveq2 6889 . . . . . . . . . . . . . . . . 17 (𝑀 = π‘₯ β†’ (logβ€˜π‘€) = (logβ€˜π‘₯))
184183negeqd 11451 . . . . . . . . . . . . . . . 16 (𝑀 = π‘₯ β†’ -(logβ€˜π‘€) = -(logβ€˜π‘₯))
185 negex 11455 . . . . . . . . . . . . . . . 16 -(logβ€˜π‘₯) ∈ V
186184, 179, 185fvmpt 6996 . . . . . . . . . . . . . . 15 (π‘₯ ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯) = -(logβ€˜π‘₯))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯) = -(logβ€˜π‘₯))
188187oveq2d 7422 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) = (𝑑 Β· -(logβ€˜π‘₯)))
189158recnd 11239 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ β„‚)
190160recnd 11239 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘₯) ∈ β„‚)
191189, 190mulneg2d 11665 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· -(logβ€˜π‘₯)) = -(𝑑 Β· (logβ€˜π‘₯)))
192188, 191eqtrd 2773 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) = -(𝑑 Β· (logβ€˜π‘₯)))
193 fveq2 6889 . . . . . . . . . . . . . . . . 17 (𝑀 = 𝑦 β†’ (logβ€˜π‘€) = (logβ€˜π‘¦))
194193negeqd 11451 . . . . . . . . . . . . . . . 16 (𝑀 = 𝑦 β†’ -(logβ€˜π‘€) = -(logβ€˜π‘¦))
195 negex 11455 . . . . . . . . . . . . . . . 16 -(logβ€˜π‘¦) ∈ V
196194, 179, 195fvmpt 6996 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦) = -(logβ€˜π‘¦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦) = -(logβ€˜π‘¦))
198197oveq2d 7422 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦)) = ((1 βˆ’ 𝑑) Β· -(logβ€˜π‘¦)))
199164recnd 11239 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (1 βˆ’ 𝑑) ∈ β„‚)
200166recnd 11239 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘¦) ∈ β„‚)
201199, 200mulneg2d 11665 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· -(logβ€˜π‘¦)) = -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))
202198, 201eqtrd 2773 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦)) = -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))
203192, 202oveq12d 7424 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))) = (-(𝑑 Β· (logβ€˜π‘₯)) + -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
204161recnd 11239 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· (logβ€˜π‘₯)) ∈ β„‚)
205167recnd 11239 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)) ∈ β„‚)
206204, 205negdid 11581 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) = (-(𝑑 Β· (logβ€˜π‘₯)) + -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
207203, 206eqtr4d 2776 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))) = -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
208176, 182, 2073brtr4d 5180 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))))
209119, 123, 130, 208scvxcvx 26480 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ∧ 𝑠 ∈ (0[,]1))) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑠 Β· 𝑒) + ((1 βˆ’ 𝑠) Β· 𝑣))) ≀ ((𝑠 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘’)) + ((1 βˆ’ 𝑠) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘£))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 26483 . . . . . . 7 (πœ‘ β†’ (((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) ∈ ℝ+ ∧ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) ≀ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))))
211210simprd 497 . . . . . 6 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) ≀ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))))
212131adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (1 / (β™―β€˜π΄)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}) = (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄))))
2145, 212, 11, 213, 36offval2 7687 . . . . . . . . . . . 12 (πœ‘ β†’ ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹) = (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜))))
215214oveq2d 7422 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜)))))
216 cnfldmul 20943 . . . . . . . . . . . 12 Β· = (.rβ€˜β„‚fld)
2172a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ β„‚fld ∈ Ring)
218109fmpttd 7112 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)):π΄βŸΆβ„‚)
219218, 5, 16fdmfifsupp 9370 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)) finSupp 0)
22053, 1, 216, 217, 5, 143, 109, 219gsummulc2 20123 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜)))) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))))
221 fss 6732 . . . . . . . . . . . . . . . 16 ((𝐹:π΄βŸΆβ„+ ∧ ℝ+ βŠ† ℝ) β†’ 𝐹:π΄βŸΆβ„)
22210, 118, 221sylancl 587 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
22310, 5, 16fdmfifsupp 9370 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹 finSupp 0)
2241, 4, 5, 9, 222, 223gsumsubgcl 19783 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ ℝ)
225224recnd 11239 . . . . . . . . . . . . 13 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ β„‚)
226225, 24, 25divrec2d 11991 . . . . . . . . . . . 12 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g 𝐹)))
227108oveq2d 7422 . . . . . . . . . . . 12 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g 𝐹)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))))
228226, 227eqtr2d 2774 . . . . . . . . . . 11 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
229215, 220, 2283eqtrd 2777 . . . . . . . . . 10 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
230229, 152oveq12d 7424 . . . . . . . . 9 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) / 1))
231224, 23nndivred 12263 . . . . . . . . . . 11 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ)
232231recnd 11239 . . . . . . . . . 10 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ β„‚)
233232div1d 11979 . . . . . . . . 9 (πœ‘ β†’ (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) / 1) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
234230, 233eqtrd 2773 . . . . . . . 8 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
235234fveq2d 6893 . . . . . . 7 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) = ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
236 fveq2 6889 . . . . . . . . . 10 (𝑀 = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) β†’ (logβ€˜π‘€) = (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
237236negeqd 11451 . . . . . . . . 9 (𝑀 = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) β†’ -(logβ€˜π‘€) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
238 negex 11455 . . . . . . . . 9 -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ V
239237, 179, 238fvmpt 6996 . . . . . . . 8 (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
240115, 239syl 17 . . . . . . 7 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
241235, 240eqtrd 2773 . . . . . 6 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
24253, 1, 216, 217, 5, 143, 31, 17gsummulc2 20123 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜))))) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))))
243 negex 11455 . . . . . . . . . . . 12 -(logβ€˜(πΉβ€˜π‘˜)) ∈ V
244243a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ V)
245 eqidd 2734 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) = (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)))
246 fveq2 6889 . . . . . . . . . . . . 13 (𝑀 = (πΉβ€˜π‘˜) β†’ (logβ€˜π‘€) = (logβ€˜(πΉβ€˜π‘˜)))
247246negeqd 11451 . . . . . . . . . . . 12 (𝑀 = (πΉβ€˜π‘˜) β†’ -(logβ€˜π‘€) = -(logβ€˜(πΉβ€˜π‘˜)))
24811, 36, 245, 247fmptco 7124 . . . . . . . . . . 11 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹) = (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))
2495, 212, 244, 213, 248offval2 7687 . . . . . . . . . 10 (πœ‘ β†’ ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹)) = (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜)))))
250249oveq2d 7422 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜))))))
25119, 24, 25divrec2d 11991 . . . . . . . . 9 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))))
252242, 250, 2513eqtr4d 2783 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
253252, 152oveq12d 7424 . . . . . . 7 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = (((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) / 1))
254117recnd 11239 . . . . . . . 8 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ∈ β„‚)
255254div1d 11979 . . . . . . 7 (πœ‘ β†’ (((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) / 1) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
256253, 255eqtrd 2773 . . . . . 6 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
257211, 241, 2563brtr3d 5179 . . . . 5 (πœ‘ β†’ -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
258116, 117, 257lenegcon1d 11793 . . . 4 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
259107, 258eqbrtrrd 5172 . . 3 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
260131, 104remulcld 11241 . . . 4 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ∈ ℝ)
261 efle 16058 . . . 4 ((((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ∈ ℝ ∧ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ ℝ) β†’ (((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ↔ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))))
262260, 116, 261syl2anc 585 . . 3 (πœ‘ β†’ (((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ↔ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))))
263259, 262mpbid 231 . 2 (πœ‘ β†’ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))))
264100rpcnd 13015 . . 3 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) ∈ β„‚)
265100rpne0d 13018 . . 3 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) β‰  0)
266264, 265, 143cxpefd 26212 . 2 (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) = (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))))
267115reeflogd 26124 . . 3 (πœ‘ β†’ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
268267eqcomd 2739 . 2 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) = (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))))
269263, 266, 2683brtr4d 5180 1 (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  Vcvv 3475   βˆ– cdif 3945   βŠ† wss 3948  βˆ…c0 4322  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674   β†Ύ cres 5678   ∘ ccom 5680  βŸΆwf 6537  β€“1-1-ontoβ†’wf1o 6540  β€˜cfv 6541  (class class class)co 7406   ∘f cof 7665  Fincfn 8936  β„‚cc 11105  β„cr 11106  0cc0 11107  1c1 11108   + caddc 11110   Β· cmul 11112  +∞cpnf 11242   < clt 11245   ≀ cle 11246   βˆ’ cmin 11441  -cneg 11442   / cdiv 11868  β„•cn 12209  β„€cz 12555  β„+crp 12971  (,)cioo 13321  [,)cico 13323  [,]cicc 13324  β™―chash 14287  Ξ£csu 15629  expce 16002  Basecbs 17141   β†Ύs cress 17170  0gc0g 17382   Ξ£g cgsu 17383  Mndcmnd 18622   MndHom cmhm 18666  SubMndcsubmnd 18667  .gcmg 18945  SubGrpcsubg 18995   GrpHom cghm 19084   GrpIso cgim 19126  CMndccmn 19643  Abelcabl 19644  mulGrpcmgp 19982  Ringcrg 20050  CRingccrg 20051  DivRingcdr 20308  SubRingcsubrg 20352  β„‚fldccnfld 20937  β„fldcrefld 21149  logclog 26055  β†‘𝑐ccxp 26056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mhm 18668  df-submnd 18669  df-grp 18819  df-minusg 18820  df-mulg 18946  df-subg 18998  df-ghm 19085  df-gim 19128  df-cntz 19176  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-dvr 20208  df-drng 20310  df-subrg 20354  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-refld 21150  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-cmp 22883  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-limc 25375  df-dv 25376  df-log 26057  df-cxp 26058
This theorem is referenced by:  amgm  26485  amgm2d  42936  amgm3d  42937  amgm4d  42938
  Copyright terms: Public domain W3C validator