MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 26718
Description: Lemma for amgm 26719. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrpβ€˜β„‚fld)
amgm.2 (πœ‘ β†’ 𝐴 ∈ Fin)
amgm.3 (πœ‘ β†’ 𝐴 β‰  βˆ…)
amgm.4 (πœ‘ β†’ 𝐹:π΄βŸΆβ„+)
Assertion
Ref Expression
amgmlem (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))

Proof of Theorem amgmlem
Dummy variables π‘Ž 𝑏 π‘˜ 𝑠 𝑒 𝑣 𝑀 π‘₯ 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 21169 . . . . . . . 8 0 = (0gβ€˜β„‚fld)
2 cnring 21167 . . . . . . . . 9 β„‚fld ∈ Ring
3 ringabl 20169 . . . . . . . . 9 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (πœ‘ β†’ β„‚fld ∈ Abel)
5 amgm.2 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ Fin)
6 resubdrg 21380 . . . . . . . . . 10 (ℝ ∈ (SubRingβ€˜β„‚fld) ∧ ℝfld ∈ DivRing)
76simpli 484 . . . . . . . . 9 ℝ ∈ (SubRingβ€˜β„‚fld)
8 subrgsubg 20467 . . . . . . . . 9 (ℝ ∈ (SubRingβ€˜β„‚fld) β†’ ℝ ∈ (SubGrpβ€˜β„‚fld))
97, 8mp1i 13 . . . . . . . 8 (πœ‘ β†’ ℝ ∈ (SubGrpβ€˜β„‚fld))
10 amgm.4 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐹:π΄βŸΆβ„+)
1110ffvelcdmda 7086 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (πΉβ€˜π‘˜) ∈ ℝ+)
1211relogcld 26355 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (logβ€˜(πΉβ€˜π‘˜)) ∈ ℝ)
1312renegcld 11645 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ ℝ)
1413fmpttd 7116 . . . . . . . 8 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))):π΄βŸΆβ„)
15 c0ex 11212 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (πœ‘ β†’ 0 ∈ V)
1714, 5, 16fdmfifsupp 9375 . . . . . . . 8 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 19829 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) ∈ ℝ)
1918recnd 11246 . . . . . 6 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) ∈ β„‚)
20 amgm.3 . . . . . . . 8 (πœ‘ β†’ 𝐴 β‰  βˆ…)
21 hashnncl 14330 . . . . . . . . 9 (𝐴 ∈ Fin β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
225, 21syl 17 . . . . . . . 8 (πœ‘ β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
2320, 22mpbird 256 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„•)
2423nncnd 12232 . . . . . 6 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„‚)
2523nnne0d 12266 . . . . . 6 (πœ‘ β†’ (β™―β€˜π΄) β‰  0)
2619, 24, 25divnegd 12007 . . . . 5 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = (-(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
2712recnd 11246 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (logβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
285, 27gsumfsum 21212 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))) = Ξ£π‘˜ ∈ 𝐴 (logβ€˜(πΉβ€˜π‘˜)))
2927negnegd 11566 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ --(logβ€˜(πΉβ€˜π‘˜)) = (logβ€˜(πΉβ€˜π‘˜)))
3029sumeq2dv 15653 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 --(logβ€˜(πΉβ€˜π‘˜)) = Ξ£π‘˜ ∈ 𝐴 (logβ€˜(πΉβ€˜π‘˜)))
3113recnd 11246 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ β„‚)
325, 31fsumneg 15737 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 --(logβ€˜(πΉβ€˜π‘˜)) = -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3328, 30, 323eqtr2rd 2779 . . . . . . . 8 (πœ‘ β†’ -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))))
345, 31gsumfsum 21212 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3534negeqd 11458 . . . . . . . 8 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = -Ξ£π‘˜ ∈ 𝐴 -(logβ€˜(πΉβ€˜π‘˜)))
3610feqmptd 6960 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 = (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))
37 relogf1o 26299 . . . . . . . . . . . . 13 (log β†Ύ ℝ+):ℝ+–1-1-onto→ℝ
38 f1of 6833 . . . . . . . . . . . . 13 ((log β†Ύ ℝ+):ℝ+–1-1-onto→ℝ β†’ (log β†Ύ ℝ+):ℝ+βŸΆβ„)
3937, 38mp1i 13 . . . . . . . . . . . 12 (πœ‘ β†’ (log β†Ύ ℝ+):ℝ+βŸΆβ„)
4039feqmptd 6960 . . . . . . . . . . 11 (πœ‘ β†’ (log β†Ύ ℝ+) = (π‘₯ ∈ ℝ+ ↦ ((log β†Ύ ℝ+)β€˜π‘₯)))
41 fvres 6910 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ+ β†’ ((log β†Ύ ℝ+)β€˜π‘₯) = (logβ€˜π‘₯))
4241mpteq2ia 5251 . . . . . . . . . . 11 (π‘₯ ∈ ℝ+ ↦ ((log β†Ύ ℝ+)β€˜π‘₯)) = (π‘₯ ∈ ℝ+ ↦ (logβ€˜π‘₯))
4340, 42eqtrdi 2788 . . . . . . . . . 10 (πœ‘ β†’ (log β†Ύ ℝ+) = (π‘₯ ∈ ℝ+ ↦ (logβ€˜π‘₯)))
44 fveq2 6891 . . . . . . . . . 10 (π‘₯ = (πΉβ€˜π‘˜) β†’ (logβ€˜π‘₯) = (logβ€˜(πΉβ€˜π‘˜)))
4511, 36, 43, 44fmptco 7129 . . . . . . . . 9 (πœ‘ β†’ ((log β†Ύ ℝ+) ∘ 𝐹) = (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜))))
4645oveq2d 7427 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (logβ€˜(πΉβ€˜π‘˜)))))
4733, 35, 463eqtr4d 2782 . . . . . . 7 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrpβ€˜β„‚fld)
4948oveq1i 7421 . . . . . . . . . . . . . 14 (𝑀 β†Ύs (β„‚ βˆ– {0})) = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))
5049rpmsubg 21209 . . . . . . . . . . . . 13 ℝ+ ∈ (SubGrpβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0})))
51 subgsubm 19064 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrpβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) β†’ ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0})))
53 cnfldbas 21148 . . . . . . . . . . . . . . 15 β„‚ = (Baseβ€˜β„‚fld)
54 cndrng 21174 . . . . . . . . . . . . . . 15 β„‚fld ∈ DivRing
5553, 1, 54drngui 20506 . . . . . . . . . . . . . 14 (β„‚ βˆ– {0}) = (Unitβ€˜β„‚fld)
5655, 48unitsubm 20277 . . . . . . . . . . . . 13 (β„‚fld ∈ Ring β†’ (β„‚ βˆ– {0}) ∈ (SubMndβ€˜π‘€))
57 eqid 2732 . . . . . . . . . . . . . 14 (𝑀 β†Ύs (β„‚ βˆ– {0})) = (𝑀 β†Ύs (β„‚ βˆ– {0}))
5857subsubm 18733 . . . . . . . . . . . . 13 ((β„‚ βˆ– {0}) ∈ (SubMndβ€˜π‘€) β†’ (ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) ↔ (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMndβ€˜(𝑀 β†Ύs (β„‚ βˆ– {0}))) ↔ (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0})))
6052, 59mpbi 229 . . . . . . . . . . 11 (ℝ+ ∈ (SubMndβ€˜π‘€) ∧ ℝ+ βŠ† (β„‚ βˆ– {0}))
6160simpli 484 . . . . . . . . . 10 ℝ+ ∈ (SubMndβ€˜π‘€)
62 eqid 2732 . . . . . . . . . . 11 (𝑀 β†Ύs ℝ+) = (𝑀 β†Ύs ℝ+)
6362submbas 18731 . . . . . . . . . 10 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ ℝ+ = (Baseβ€˜(𝑀 β†Ύs ℝ+)))
6461, 63ax-mp 5 . . . . . . . . 9 ℝ+ = (Baseβ€˜(𝑀 β†Ύs ℝ+))
65 cnfld1 21170 . . . . . . . . . . . 12 1 = (1rβ€˜β„‚fld)
6648, 65ringidval 20077 . . . . . . . . . . 11 1 = (0gβ€˜π‘€)
6762, 66subm0 18732 . . . . . . . . . 10 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ 1 = (0gβ€˜(𝑀 β†Ύs ℝ+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0gβ€˜(𝑀 β†Ύs ℝ+))
69 cncrng 21166 . . . . . . . . . . 11 β„‚fld ∈ CRing
7048crngmgp 20135 . . . . . . . . . . 11 (β„‚fld ∈ CRing β†’ 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ CMnd)
7262submmnd 18730 . . . . . . . . . . 11 (ℝ+ ∈ (SubMndβ€˜π‘€) β†’ (𝑀 β†Ύs ℝ+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ (𝑀 β†Ύs ℝ+) ∈ Mnd)
7462subcmn 19746 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀 β†Ύs ℝ+) ∈ Mnd) β†’ (𝑀 β†Ύs ℝ+) ∈ CMnd)
7571, 73, 74syl2anc 584 . . . . . . . . 9 (πœ‘ β†’ (𝑀 β†Ύs ℝ+) ∈ CMnd)
76 df-refld 21377 . . . . . . . . . . . 12 ℝfld = (β„‚fld β†Ύs ℝ)
7776subrgring 20464 . . . . . . . . . . 11 (ℝ ∈ (SubRingβ€˜β„‚fld) β†’ ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 ℝfld ∈ Ring
79 ringmnd 20137 . . . . . . . . . 10 (ℝfld ∈ Ring β†’ ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (πœ‘ β†’ ℝfld ∈ Mnd)
8148oveq1i 7421 . . . . . . . . . . . 12 (𝑀 β†Ύs ℝ+) = ((mulGrpβ€˜β„‚fld) β†Ύs ℝ+)
8281reloggim 26331 . . . . . . . . . . 11 (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpIso ℝfld)
83 gimghm 19178 . . . . . . . . . . 11 ((log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpIso ℝfld) β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld)
85 ghmmhm 19140 . . . . . . . . . 10 ((log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) GrpHom ℝfld) β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (πœ‘ β†’ (log β†Ύ ℝ+) ∈ ((𝑀 β†Ύs ℝ+) MndHom ℝfld))
87 1ex 11214 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 1 ∈ V)
8910, 5, 88fdmfifsupp 9375 . . . . . . . . 9 (πœ‘ β†’ 𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 19847 . . . . . . . 8 (πœ‘ β†’ (ℝfld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = ((log β†Ύ ℝ+)β€˜((𝑀 β†Ύs ℝ+) Ξ£g 𝐹)))
91 subgsubm 19064 . . . . . . . . . 10 (ℝ ∈ (SubGrpβ€˜β„‚fld) β†’ ℝ ∈ (SubMndβ€˜β„‚fld))
929, 91syl 17 . . . . . . . . 9 (πœ‘ β†’ ℝ ∈ (SubMndβ€˜β„‚fld))
93 fco 6741 . . . . . . . . . 10 (((log β†Ύ ℝ+):ℝ+βŸΆβ„ ∧ 𝐹:π΄βŸΆβ„+) β†’ ((log β†Ύ ℝ+) ∘ 𝐹):π΄βŸΆβ„)
9439, 10, 93syl2anc 584 . . . . . . . . 9 (πœ‘ β†’ ((log β†Ύ ℝ+) ∘ 𝐹):π΄βŸΆβ„)
955, 92, 94, 76gsumsubm 18752 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = (ℝfld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ+ ∈ (SubMndβ€˜π‘€))
975, 96, 10, 62gsumsubm 18752 . . . . . . . . 9 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) = ((𝑀 β†Ύs ℝ+) Ξ£g 𝐹))
9897fveq2d 6895 . . . . . . . 8 (πœ‘ β†’ ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)) = ((log β†Ύ ℝ+)β€˜((𝑀 β†Ύs ℝ+) Ξ£g 𝐹)))
9990, 95, 983eqtr4d 2782 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g ((log β†Ύ ℝ+) ∘ 𝐹)) = ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 19828 . . . . . . . 8 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) ∈ ℝ+)
101100fvresd 6911 . . . . . . 7 (πœ‘ β†’ ((log β†Ύ ℝ+)β€˜(𝑀 Ξ£g 𝐹)) = (logβ€˜(𝑀 Ξ£g 𝐹)))
10247, 99, 1013eqtrd 2776 . . . . . 6 (πœ‘ β†’ -(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) = (logβ€˜(𝑀 Ξ£g 𝐹)))
103102oveq1d 7426 . . . . 5 (πœ‘ β†’ (-(β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((logβ€˜(𝑀 Ξ£g 𝐹)) / (β™―β€˜π΄)))
104100relogcld 26355 . . . . . . 7 (πœ‘ β†’ (logβ€˜(𝑀 Ξ£g 𝐹)) ∈ ℝ)
105104recnd 11246 . . . . . 6 (πœ‘ β†’ (logβ€˜(𝑀 Ξ£g 𝐹)) ∈ β„‚)
106105, 24, 25divrec2d 11998 . . . . 5 (πœ‘ β†’ ((logβ€˜(𝑀 Ξ£g 𝐹)) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))))
10726, 103, 1063eqtrd 2776 . . . 4 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))))
10836oveq2d 7427 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜))))
10911rpcnd 13022 . . . . . . . . . 10 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
1105, 109gsumfsum 21212 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜))) = Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜))
111108, 110eqtrd 2772 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) = Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜))
1125, 20, 11fsumrpcl 15687 . . . . . . . 8 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝐴 (πΉβ€˜π‘˜) ∈ ℝ+)
113111, 112eqeltrd 2833 . . . . . . 7 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ ℝ+)
11423nnrpd 13018 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π΄) ∈ ℝ+)
115113, 114rpdivcld 13037 . . . . . 6 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ+)
116115relogcld 26355 . . . . 5 (πœ‘ β†’ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ ℝ)
11718, 23nndivred 12270 . . . . 5 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ∈ ℝ)
118 rpssre 12985 . . . . . . . . 9 ℝ+ βŠ† ℝ
119118a1i 11 . . . . . . . 8 (πœ‘ β†’ ℝ+ βŠ† ℝ)
120 relogcl 26308 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ β†’ (logβ€˜π‘€) ∈ ℝ)
121120adantl 482 . . . . . . . . . 10 ((πœ‘ ∧ 𝑀 ∈ ℝ+) β†’ (logβ€˜π‘€) ∈ ℝ)
122121renegcld 11645 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ ℝ+) β†’ -(logβ€˜π‘€) ∈ ℝ)
123122fmpttd 7116 . . . . . . . 8 (πœ‘ β†’ (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)):ℝ+βŸΆβ„)
124 ioorp 13406 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2825 . . . . . . . . . . 11 (π‘Ž ∈ (0(,)+∞) ↔ π‘Ž ∈ ℝ+)
126124eleq2i 2825 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 13401 . . . . . . . . . . 11 ((π‘Ž ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) β†’ (π‘Ž[,]𝑏) βŠ† (0(,)+∞))
128125, 126, 127syl2anbr 599 . . . . . . . . . 10 ((π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+) β†’ (π‘Ž[,]𝑏) βŠ† (0(,)+∞))
129128, 124sseqtrdi 4032 . . . . . . . . 9 ((π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+) β†’ (π‘Ž[,]𝑏) βŠ† ℝ+)
130129adantl 482 . . . . . . . 8 ((πœ‘ ∧ (π‘Ž ∈ ℝ+ ∧ 𝑏 ∈ ℝ+)) β†’ (π‘Ž[,]𝑏) βŠ† ℝ+)
13123nnrecred 12267 . . . . . . . . . 10 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ ℝ)
132114rpreccld 13030 . . . . . . . . . . 11 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ ℝ+)
133132rpge0d 13024 . . . . . . . . . 10 (πœ‘ β†’ 0 ≀ (1 / (β™―β€˜π΄)))
134 elrege0 13435 . . . . . . . . . 10 ((1 / (β™―β€˜π΄)) ∈ (0[,)+∞) ↔ ((1 / (β™―β€˜π΄)) ∈ ℝ ∧ 0 ≀ (1 / (β™―β€˜π΄))))
135131, 133, 134sylanbrc 583 . . . . . . . . 9 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ (0[,)+∞))
136 fconst6g 6780 . . . . . . . . 9 ((1 / (β™―β€˜π΄)) ∈ (0[,)+∞) β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}):𝐴⟢(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}):𝐴⟢(0[,)+∞))
138 0lt1 11740 . . . . . . . . 9 0 < 1
139 fconstmpt 5738 . . . . . . . . . . 11 (𝐴 Γ— {(1 / (β™―β€˜π΄))}) = (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))
140139oveq2i 7422 . . . . . . . . . 10 (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄))))
141 ringmnd 20137 . . . . . . . . . . . . 13 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (πœ‘ β†’ β„‚fld ∈ Mnd)
143131recnd 11246 . . . . . . . . . . . 12 (πœ‘ β†’ (1 / (β™―β€˜π΄)) ∈ β„‚)
144 eqid 2732 . . . . . . . . . . . . 13 (.gβ€˜β„‚fld) = (.gβ€˜β„‚fld)
14553, 144gsumconst 19843 . . . . . . . . . . . 12 ((β„‚fld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (β™―β€˜π΄)) ∈ β„‚) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))))
146142, 5, 143, 145syl3anc 1371 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))))
14723nnzd 12589 . . . . . . . . . . . 12 (πœ‘ β†’ (β™―β€˜π΄) ∈ β„€)
148 cnfldmulg 21177 . . . . . . . . . . . 12 (((β™―β€˜π΄) ∈ β„€ ∧ (1 / (β™―β€˜π΄)) ∈ β„‚) β†’ ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))) = ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))))
149147, 143, 148syl2anc 584 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΄)(.gβ€˜β„‚fld)(1 / (β™―β€˜π΄))) = ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))))
15024, 25recidd 11989 . . . . . . . . . . 11 (πœ‘ β†’ ((β™―β€˜π΄) Β· (1 / (β™―β€˜π΄))) = 1)
151146, 149, 1503eqtrd 2776 . . . . . . . . . 10 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄)))) = 1)
152140, 151eqtrid 2784 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})) = 1)
153138, 152breqtrrid 5186 . . . . . . . 8 (πœ‘ β†’ 0 < (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))
154 logccv 26395 . . . . . . . . . . . 12 (((π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
1551543adant1 1130 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
156 ioossre 13389 . . . . . . . . . . . . . . 15 (0(,)1) βŠ† ℝ
157 simp3 1138 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ (0(,)1))
158156, 157sselid 3980 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ ℝ)
159 simp21 1206 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ π‘₯ ∈ ℝ+)
160159relogcld 26355 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘₯) ∈ ℝ)
161158, 160remulcld 11248 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· (logβ€˜π‘₯)) ∈ ℝ)
162 1re 11218 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 11528 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑑 ∈ ℝ) β†’ (1 βˆ’ 𝑑) ∈ ℝ)
164162, 158, 163sylancr 587 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (1 βˆ’ 𝑑) ∈ ℝ)
165 simp22 1207 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑦 ∈ ℝ+)
166165relogcld 26355 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘¦) ∈ ℝ)
167164, 166remulcld 11248 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)) ∈ ℝ)
168161, 167readdcld 11247 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) ∈ ℝ)
169 simp1 1136 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ πœ‘)
170 ioossicc 13414 . . . . . . . . . . . . . . 15 (0(,)1) βŠ† (0[,]1)
171170, 157sselid 3980 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ (0[,]1))
172119, 130cvxcl 26713 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑑 ∈ (0[,]1))) β†’ ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1372 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+)
174173relogcld 26355 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ∈ ℝ)
175168, 174ltnegd 11796 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) < (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ↔ -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))))
176155, 175mpbid 231 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
177 fveq2 6891 . . . . . . . . . . . . 13 (𝑀 = ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) β†’ (logβ€˜π‘€) = (logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
178177negeqd 11458 . . . . . . . . . . . 12 (𝑀 = ((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) β†’ -(logβ€˜π‘€) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
179 eqid 2732 . . . . . . . . . . . 12 (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) = (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))
180 negex 11462 . . . . . . . . . . . 12 -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) ∈ V
181178, 179, 180fvmpt 6998 . . . . . . . . . . 11 (((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦)) ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) = -(logβ€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))))
183 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑀 = π‘₯ β†’ (logβ€˜π‘€) = (logβ€˜π‘₯))
184183negeqd 11458 . . . . . . . . . . . . . . . 16 (𝑀 = π‘₯ β†’ -(logβ€˜π‘€) = -(logβ€˜π‘₯))
185 negex 11462 . . . . . . . . . . . . . . . 16 -(logβ€˜π‘₯) ∈ V
186184, 179, 185fvmpt 6998 . . . . . . . . . . . . . . 15 (π‘₯ ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯) = -(logβ€˜π‘₯))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯) = -(logβ€˜π‘₯))
188187oveq2d 7427 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) = (𝑑 Β· -(logβ€˜π‘₯)))
189158recnd 11246 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ 𝑑 ∈ β„‚)
190160recnd 11246 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘₯) ∈ β„‚)
191189, 190mulneg2d 11672 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· -(logβ€˜π‘₯)) = -(𝑑 Β· (logβ€˜π‘₯)))
192188, 191eqtrd 2772 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) = -(𝑑 Β· (logβ€˜π‘₯)))
193 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑀 = 𝑦 β†’ (logβ€˜π‘€) = (logβ€˜π‘¦))
194193negeqd 11458 . . . . . . . . . . . . . . . 16 (𝑀 = 𝑦 β†’ -(logβ€˜π‘€) = -(logβ€˜π‘¦))
195 negex 11462 . . . . . . . . . . . . . . . 16 -(logβ€˜π‘¦) ∈ V
196194, 179, 195fvmpt 6998 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦) = -(logβ€˜π‘¦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦) = -(logβ€˜π‘¦))
198197oveq2d 7427 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦)) = ((1 βˆ’ 𝑑) Β· -(logβ€˜π‘¦)))
199164recnd 11246 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (1 βˆ’ 𝑑) ∈ β„‚)
200166recnd 11246 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (logβ€˜π‘¦) ∈ β„‚)
201199, 200mulneg2d 11672 . . . . . . . . . . . . 13 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· -(logβ€˜π‘¦)) = -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))
202198, 201eqtrd 2772 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦)) = -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)))
203192, 202oveq12d 7429 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))) = (-(𝑑 Β· (logβ€˜π‘₯)) + -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
204161recnd 11246 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ (𝑑 Β· (logβ€˜π‘₯)) ∈ β„‚)
205167recnd 11246 . . . . . . . . . . . 12 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦)) ∈ β„‚)
206204, 205negdid 11588 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))) = (-(𝑑 Β· (logβ€˜π‘₯)) + -((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
207203, 206eqtr4d 2775 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))) = -((𝑑 Β· (logβ€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· (logβ€˜π‘¦))))
208176, 182, 2073brtr4d 5180 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ π‘₯ < 𝑦) ∧ 𝑑 ∈ (0(,)1)) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑑 Β· π‘₯) + ((1 βˆ’ 𝑑) Β· 𝑦))) < ((𝑑 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘₯)) + ((1 βˆ’ 𝑑) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘¦))))
209119, 123, 130, 208scvxcvx 26714 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ∧ 𝑠 ∈ (0[,]1))) β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((𝑠 Β· 𝑒) + ((1 βˆ’ 𝑠) Β· 𝑣))) ≀ ((𝑠 Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘’)) + ((1 βˆ’ 𝑠) Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜π‘£))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 26717 . . . . . . 7 (πœ‘ β†’ (((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) ∈ ℝ+ ∧ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) ≀ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))))
211210simprd 496 . . . . . 6 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) ≀ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))))
212131adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (1 / (β™―β€˜π΄)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐴 Γ— {(1 / (β™―β€˜π΄))}) = (π‘˜ ∈ 𝐴 ↦ (1 / (β™―β€˜π΄))))
2145, 212, 11, 213, 36offval2 7692 . . . . . . . . . . . 12 (πœ‘ β†’ ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹) = (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜))))
215214oveq2d 7427 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜)))))
216 cnfldmul 21150 . . . . . . . . . . . 12 Β· = (.rβ€˜β„‚fld)
2172a1i 11 . . . . . . . . . . . 12 (πœ‘ β†’ β„‚fld ∈ Ring)
218109fmpttd 7116 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)):π΄βŸΆβ„‚)
219218, 5, 16fdmfifsupp 9375 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)) finSupp 0)
22053, 1, 216, 217, 5, 143, 109, 219gsummulc2 20205 . . . . . . . . . . 11 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· (πΉβ€˜π‘˜)))) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))))
221 fss 6734 . . . . . . . . . . . . . . . 16 ((𝐹:π΄βŸΆβ„+ ∧ ℝ+ βŠ† ℝ) β†’ 𝐹:π΄βŸΆβ„)
22210, 118, 221sylancl 586 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
22310, 5, 16fdmfifsupp 9375 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹 finSupp 0)
2241, 4, 5, 9, 222, 223gsumsubgcl 19829 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ ℝ)
225224recnd 11246 . . . . . . . . . . . . 13 (πœ‘ β†’ (β„‚fld Ξ£g 𝐹) ∈ β„‚)
226225, 24, 25divrec2d 11998 . . . . . . . . . . . 12 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g 𝐹)))
227108oveq2d 7427 . . . . . . . . . . . 12 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g 𝐹)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))))
228226, 227eqtr2d 2773 . . . . . . . . . . 11 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ (πΉβ€˜π‘˜)))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
229215, 220, 2283eqtrd 2776 . . . . . . . . . 10 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
230229, 152oveq12d 7429 . . . . . . . . 9 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) / 1))
231224, 23nndivred 12270 . . . . . . . . . . 11 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ)
232231recnd 11246 . . . . . . . . . 10 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ β„‚)
233232div1d 11986 . . . . . . . . 9 (πœ‘ β†’ (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) / 1) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
234230, 233eqtrd 2772 . . . . . . . 8 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
235234fveq2d 6895 . . . . . . 7 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) = ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
236 fveq2 6891 . . . . . . . . . 10 (𝑀 = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) β†’ (logβ€˜π‘€) = (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
237236negeqd 11458 . . . . . . . . 9 (𝑀 = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) β†’ -(logβ€˜π‘€) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
238 negex 11462 . . . . . . . . 9 -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ V
239237, 179, 238fvmpt 6998 . . . . . . . 8 (((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) ∈ ℝ+ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
240115, 239syl 17 . . . . . . 7 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
241235, 240eqtrd 2772 . . . . . 6 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€))β€˜((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· 𝐹)) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))})))) = -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
24253, 1, 216, 217, 5, 143, 31, 17gsummulc2 20205 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜))))) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))))
243 negex 11462 . . . . . . . . . . . 12 -(logβ€˜(πΉβ€˜π‘˜)) ∈ V
244243a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ -(logβ€˜(πΉβ€˜π‘˜)) ∈ V)
245 eqidd 2733 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) = (𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)))
246 fveq2 6891 . . . . . . . . . . . . 13 (𝑀 = (πΉβ€˜π‘˜) β†’ (logβ€˜π‘€) = (logβ€˜(πΉβ€˜π‘˜)))
247246negeqd 11458 . . . . . . . . . . . 12 (𝑀 = (πΉβ€˜π‘˜) β†’ -(logβ€˜π‘€) = -(logβ€˜(πΉβ€˜π‘˜)))
24811, 36, 245, 247fmptco 7129 . . . . . . . . . . 11 (πœ‘ β†’ ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹) = (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))
2495, 212, 244, 213, 248offval2 7692 . . . . . . . . . 10 (πœ‘ β†’ ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹)) = (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜)))))
250249oveq2d 7427 . . . . . . . . 9 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) = (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ ((1 / (β™―β€˜π΄)) Β· -(logβ€˜(πΉβ€˜π‘˜))))))
25119, 24, 25divrec2d 11998 . . . . . . . . 9 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) = ((1 / (β™―β€˜π΄)) Β· (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜))))))
252242, 250, 2513eqtr4d 2782 . . . . . . . 8 (πœ‘ β†’ (β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
253252, 152oveq12d 7429 . . . . . . 7 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = (((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) / 1))
254117recnd 11246 . . . . . . . 8 (πœ‘ β†’ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ∈ β„‚)
255254div1d 11986 . . . . . . 7 (πœ‘ β†’ (((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) / 1) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
256253, 255eqtrd 2772 . . . . . 6 (πœ‘ β†’ ((β„‚fld Ξ£g ((𝐴 Γ— {(1 / (β™―β€˜π΄))}) ∘f Β· ((𝑀 ∈ ℝ+ ↦ -(logβ€˜π‘€)) ∘ 𝐹))) / (β„‚fld Ξ£g (𝐴 Γ— {(1 / (β™―β€˜π΄))}))) = ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
257211, 241, 2563brtr3d 5179 . . . . 5 (πœ‘ β†’ -(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)))
258116, 117, 257lenegcon1d 11800 . . . 4 (πœ‘ β†’ -((β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ -(logβ€˜(πΉβ€˜π‘˜)))) / (β™―β€˜π΄)) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
259107, 258eqbrtrrd 5172 . . 3 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))
260131, 104remulcld 11248 . . . 4 (πœ‘ β†’ ((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ∈ ℝ)
261 efle 16065 . . . 4 ((((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ∈ ℝ ∧ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ∈ ℝ) β†’ (((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ↔ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))))
262260, 116, 261syl2anc 584 . . 3 (πœ‘ β†’ (((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹))) ≀ (logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))) ↔ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄))))))
263259, 262mpbid 231 . 2 (πœ‘ β†’ (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))) ≀ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))))
264100rpcnd 13022 . . 3 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) ∈ β„‚)
265100rpne0d 13025 . . 3 (πœ‘ β†’ (𝑀 Ξ£g 𝐹) β‰  0)
266264, 265, 143cxpefd 26444 . 2 (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) = (expβ€˜((1 / (β™―β€˜π΄)) Β· (logβ€˜(𝑀 Ξ£g 𝐹)))))
267115reeflogd 26356 . . 3 (πœ‘ β†’ (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))) = ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
268267eqcomd 2738 . 2 (πœ‘ β†’ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)) = (expβ€˜(logβ€˜((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))))
269263, 266, 2683brtr4d 5180 1 (πœ‘ β†’ ((𝑀 Ξ£g 𝐹)↑𝑐(1 / (β™―β€˜π΄))) ≀ ((β„‚fld Ξ£g 𝐹) / (β™―β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474   βˆ– cdif 3945   βŠ† wss 3948  βˆ…c0 4322  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674   β†Ύ cres 5678   ∘ ccom 5680  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411   ∘f cof 7670  Fincfn 8941  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   Β· cmul 11117  +∞cpnf 11249   < clt 11252   ≀ cle 11253   βˆ’ cmin 11448  -cneg 11449   / cdiv 11875  β„•cn 12216  β„€cz 12562  β„+crp 12978  (,)cioo 13328  [,)cico 13330  [,]cicc 13331  β™―chash 14294  Ξ£csu 15636  expce 16009  Basecbs 17148   β†Ύs cress 17177  0gc0g 17389   Ξ£g cgsu 17390  Mndcmnd 18659   MndHom cmhm 18703  SubMndcsubmnd 18704  .gcmg 18986  SubGrpcsubg 19036   GrpHom cghm 19127   GrpIso cgim 19171  CMndccmn 19689  Abelcabl 19690  mulGrpcmgp 20028  Ringcrg 20127  CRingccrg 20128  SubRingcsubrg 20457  DivRingcdr 20500  β„‚fldccnfld 21144  β„fldcrefld 21376  logclog 26287  β†‘𝑐ccxp 26288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-mulg 18987  df-subg 19039  df-ghm 19128  df-gim 19173  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-subrng 20434  df-subrg 20459  df-drng 20502  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-refld 21377  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-cmp 23111  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25607  df-dv 25608  df-log 26289  df-cxp 26290
This theorem is referenced by:  amgm  26719  amgm2d  43252  amgm3d  43253  amgm4d  43254
  Copyright terms: Public domain W3C validator