MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 26952
Description: Lemma for amgm 26953. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
amgm.2 (𝜑𝐴 ∈ Fin)
amgm.3 (𝜑𝐴 ≠ ∅)
amgm.4 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlem (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlem
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 21355 . . . . . . . 8 0 = (0g‘ℂfld)
2 cnring 21353 . . . . . . . . 9 fld ∈ Ring
3 ringabl 20241 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (𝜑 → ℂfld ∈ Abel)
5 amgm.2 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 resubdrg 21568 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
76simpli 483 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
8 subrgsubg 20537 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
97, 8mp1i 13 . . . . . . . 8 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
10 amgm.4 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
1110ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
1211relogcld 26584 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
1312renegcld 11664 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
1413fmpttd 7105 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
15 c0ex 11229 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
1714, 5, 16fdmfifsupp 9387 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 19901 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℝ)
1918recnd 11263 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℂ)
20 amgm.3 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
21 hashnncl 14384 . . . . . . . . 9 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
225, 21syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
2320, 22mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ)
2423nncnd 12256 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
2523nnne0d 12290 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2619, 24, 25divnegd 12030 . . . . 5 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
2712recnd 11263 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
285, 27gsumfsum 21402 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
2927negnegd 11585 . . . . . . . . . 10 ((𝜑𝑘𝐴) → --(log‘(𝐹𝑘)) = (log‘(𝐹𝑘)))
3029sumeq2dv 15718 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
3113recnd 11263 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
325, 31fsumneg 15803 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3328, 30, 323eqtr2rd 2777 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘(𝐹𝑘)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
345, 31gsumfsum 21402 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3534negeqd 11476 . . . . . . . 8 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3610feqmptd 6947 . . . . . . . . . 10 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
37 relogf1o 26527 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6818 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . . . . 12 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6947 . . . . . . . . . . 11 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
41 fvres 6895 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
4241mpteq2ia 5216 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
4340, 42eqtrdi 2786 . . . . . . . . . 10 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
44 fveq2 6876 . . . . . . . . . 10 (𝑥 = (𝐹𝑘) → (log‘𝑥) = (log‘(𝐹𝑘)))
4511, 36, 43, 44fmptco 7119 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹) = (𝑘𝐴 ↦ (log‘(𝐹𝑘))))
4645oveq2d 7421 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
4733, 35, 463eqtr4d 2780 . . . . . . 7 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrp‘ℂfld)
4948oveq1i 7415 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5049rpmsubg 21399 . . . . . . . . . . . . 13 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
51 subgsubm 19131 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
53 cnfldbas 21319 . . . . . . . . . . . . . . 15 ℂ = (Base‘ℂfld)
54 cndrng 21361 . . . . . . . . . . . . . . 15 fld ∈ DivRing
5553, 1, 54drngui 20695 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (Unit‘ℂfld)
5655, 48unitsubm 20346 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
57 eqid 2735 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5857subsubm 18794 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
6052, 59mpbi 230 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
6160simpli 483 . . . . . . . . . 10 + ∈ (SubMnd‘𝑀)
62 eqid 2735 . . . . . . . . . . 11 (𝑀s+) = (𝑀s+)
6362submbas 18792 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
6461, 63ax-mp 5 . . . . . . . . 9 + = (Base‘(𝑀s+))
65 cnfld1 21356 . . . . . . . . . . . 12 1 = (1r‘ℂfld)
6648, 65ringidval 20143 . . . . . . . . . . 11 1 = (0g𝑀)
6762, 66subm0 18793 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀s+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0g‘(𝑀s+))
69 cncrng 21351 . . . . . . . . . . 11 fld ∈ CRing
7048crngmgp 20201 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (𝜑𝑀 ∈ CMnd)
7262submmnd 18791 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑀s+) ∈ Mnd)
7462subcmn 19818 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
7571, 73, 74syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀s+) ∈ CMnd)
76 df-refld 21565 . . . . . . . . . . . 12 fld = (ℂflds ℝ)
7776subrgring 20534 . . . . . . . . . . 11 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 fld ∈ Ring
79 ringmnd 20203 . . . . . . . . . 10 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (𝜑 → ℝfld ∈ Mnd)
8148oveq1i 7415 . . . . . . . . . . . 12 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
8281reloggim 26560 . . . . . . . . . . 11 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
83 gimghm 19247 . . . . . . . . . . 11 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
85 ghmmhm 19209 . . . . . . . . . 10 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
87 1ex 11231 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ V)
8910, 5, 88fdmfifsupp 9387 . . . . . . . . 9 (𝜑𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 19919 . . . . . . . 8 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
91 subgsubm 19131 . . . . . . . . . 10 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
929, 91syl 17 . . . . . . . . 9 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
93 fco 6730 . . . . . . . . . 10 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
9439, 10, 93syl2anc 584 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
955, 92, 94, 76gsumsubm 18813 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
975, 96, 10, 62gsumsubm 18813 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
9897fveq2d 6880 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
9990, 95, 983eqtr4d 2780 . . . . . . 7 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 19900 . . . . . . . 8 (𝜑 → (𝑀 Σg 𝐹) ∈ ℝ+)
101100fvresd 6896 . . . . . . 7 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
10247, 99, 1013eqtrd 2774 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (log‘(𝑀 Σg 𝐹)))
103102oveq1d 7420 . . . . 5 (𝜑 → (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)))
104100relogcld 26584 . . . . . . 7 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℝ)
105104recnd 11263 . . . . . 6 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℂ)
106105, 24, 25divrec2d 12021 . . . . 5 (𝜑 → ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10726, 103, 1063eqtrd 2774 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10836oveq2d 7421 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
10911rpcnd 13053 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1105, 109gsumfsum 21402 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
111108, 110eqtrd 2770 . . . . . . . 8 (𝜑 → (ℂfld Σg 𝐹) = Σ𝑘𝐴 (𝐹𝑘))
1125, 20, 11fsumrpcl 15753 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℝ+)
113111, 112eqeltrd 2834 . . . . . . 7 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ+)
11423nnrpd 13049 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℝ+)
115113, 114rpdivcld 13068 . . . . . 6 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+)
116115relogcld 26584 . . . . 5 (𝜑 → (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ)
11718, 23nndivred 12294 . . . . 5 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℝ)
118 rpssre 13016 . . . . . . . . 9 + ⊆ ℝ
119118a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
120 relogcl 26536 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (log‘𝑤) ∈ ℝ)
121120adantl 481 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
122121renegcld 11664 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
123122fmpttd 7105 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
124 ioorp 13442 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2826 . . . . . . . . . . 11 (𝑎 ∈ (0(,)+∞) ↔ 𝑎 ∈ ℝ+)
126124eleq2i 2826 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 13436 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
128125, 126, 127syl2anbr 599 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
129128, 124sseqtrdi 3999 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
130129adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
13123nnrecred 12291 . . . . . . . . . 10 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
132114rpreccld 13061 . . . . . . . . . . 11 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
133132rpge0d 13055 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (♯‘𝐴)))
134 elrege0 13471 . . . . . . . . . 10 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (♯‘𝐴))))
135131, 133, 134sylanbrc 583 . . . . . . . . 9 (𝜑 → (1 / (♯‘𝐴)) ∈ (0[,)+∞))
136 fconst6g 6767 . . . . . . . . 9 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
138 0lt1 11759 . . . . . . . . 9 0 < 1
139 fconstmpt 5716 . . . . . . . . . . 11 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
140139oveq2i 7416 . . . . . . . . . 10 (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
141 ringmnd 20203 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Mnd)
143131recnd 11263 . . . . . . . . . . . 12 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
144 eqid 2735 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
14553, 144gsumconst 19915 . . . . . . . . . . . 12 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
146142, 5, 143, 145syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
14723nnzd 12615 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
148 cnfldmulg 21366 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
149147, 143, 148syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
15024, 25recidd 12012 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
151146, 149, 1503eqtrd 2774 . . . . . . . . . 10 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = 1)
152140, 151eqtrid 2782 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
153138, 152breqtrrid 5157 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))
154 logccv 26624 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1551543adant1 1130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
156 ioossre 13424 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℝ
157 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
158156, 157sselid 3956 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
159 simp21 1207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
160159relogcld 26584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
161158, 160remulcld 11265 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
162 1re 11235 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 11547 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
164162, 158, 163sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
165 simp22 1208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
166165relogcld 26584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
167164, 166remulcld 11265 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
168161, 167readdcld 11264 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
169 simp1 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑)
170 ioossicc 13450 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ (0[,]1)
171170, 157sselid 3956 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1))
172119, 130cvxcl 26947 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
174173relogcld 26584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
175168, 174ltnegd 11815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
176155, 175mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
177 fveq2 6876 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
178177negeqd 11476 . . . . . . . . . . . 12 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
179 eqid 2735 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
180 negex 11480 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
181178, 179, 180fvmpt 6986 . . . . . . . . . . 11 (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
183 fveq2 6876 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
184183negeqd 11476 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
185 negex 11480 . . . . . . . . . . . . . . . 16 -(log‘𝑥) ∈ V
186184, 179, 185fvmpt 6986 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
188187oveq2d 7421 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
189158recnd 11263 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
190160recnd 11263 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
191189, 190mulneg2d 11691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
192188, 191eqtrd 2770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
193 fveq2 6876 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
194193negeqd 11476 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
195 negex 11480 . . . . . . . . . . . . . . . 16 -(log‘𝑦) ∈ V
196194, 179, 195fvmpt 6986 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
198197oveq2d 7421 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
199164recnd 11263 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
200166recnd 11263 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
201199, 200mulneg2d 11691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
202198, 201eqtrd 2770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
203192, 202oveq12d 7423 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
204161recnd 11263 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
205167recnd 11263 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
206204, 205negdid 11607 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
207203, 206eqtr4d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
208176, 182, 2073brtr4d 5151 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
209119, 123, 130, 208scvxcvx 26948 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 26951 . . . . . . 7 (𝜑 → (((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))))
211210simprd 495 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))))
212131adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
2145, 212, 11, 213, 36offval2 7691 . . . . . . . . . . . 12 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘))))
215214oveq2d 7421 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))))
216 cnfldmul 21323 . . . . . . . . . . . 12 · = (.r‘ℂfld)
2172a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Ring)
218109fmpttd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)):𝐴⟶ℂ)
219218, 5, 16fdmfifsupp 9387 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) finSupp 0)
22053, 1, 216, 217, 5, 143, 109, 219gsummulc2 20277 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
221 fss 6722 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
22210, 118, 221sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℝ)
22310, 5, 16fdmfifsupp 9387 . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0)
2241, 4, 5, 9, 222, 223gsumsubgcl 19901 . . . . . . . . . . . . . 14 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ)
225224recnd 11263 . . . . . . . . . . . . 13 (𝜑 → (ℂfld Σg 𝐹) ∈ ℂ)
226225, 24, 25divrec2d 12021 . . . . . . . . . . . 12 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)))
227108oveq2d 7421 . . . . . . . . . . . 12 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
228226, 227eqtr2d 2771 . . . . . . . . . . 11 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
229215, 220, 2283eqtrd 2774 . . . . . . . . . 10 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
230229, 152oveq12d 7423 . . . . . . . . 9 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1))
231224, 23nndivred 12294 . . . . . . . . . . 11 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ)
232231recnd 11263 . . . . . . . . . 10 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℂ)
233232div1d 12009 . . . . . . . . 9 (𝜑 → (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
234230, 233eqtrd 2770 . . . . . . . 8 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
235234fveq2d 6880 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
236 fveq2 6876 . . . . . . . . . 10 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
237236negeqd 11476 . . . . . . . . 9 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
238 negex 11480 . . . . . . . . 9 -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V
239237, 179, 238fvmpt 6986 . . . . . . . 8 (((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
240115, 239syl 17 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
241235, 240eqtrd 2770 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
24253, 1, 216, 217, 5, 143, 31, 17gsummulc2 20277 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
243 negex 11480 . . . . . . . . . . . 12 -(log‘(𝐹𝑘)) ∈ V
244243a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
245 eqidd 2736 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
246 fveq2 6876 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
247246negeqd 11476 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
24811, 36, 245, 247fmptco 7119 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
2495, 212, 244, 213, 248offval2 7691 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘)))))
250249oveq2d 7421 . . . . . . . . 9 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))))
25119, 24, 25divrec2d 12021 . . . . . . . . 9 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
252242, 250, 2513eqtr4d 2780 . . . . . . . 8 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
253252, 152oveq12d 7423 . . . . . . 7 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1))
254117recnd 11263 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℂ)
255254div1d 12009 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
256253, 255eqtrd 2770 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
257211, 241, 2563brtr3d 5150 . . . . 5 (𝜑 → -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
258116, 117, 257lenegcon1d 11819 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
259107, 258eqbrtrrd 5143 . . 3 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
260131, 104remulcld 11265 . . . 4 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ)
261 efle 16136 . . . 4 ((((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ ∧ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
262260, 116, 261syl2anc 584 . . 3 (𝜑 → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
263259, 262mpbid 232 . 2 (𝜑 → (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
264100rpcnd 13053 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ ℂ)
265100rpne0d 13056 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0)
266264, 265, 143cxpefd 26673 . 2 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))))
267115reeflogd 26585 . . 3 (𝜑 → (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
268267eqcomd 2741 . 2 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
269263, 266, 2683brtr4d 5151 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  cres 5656  ccom 5658  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  f cof 7669  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  cz 12588  +crp 13008  (,)cioo 13362  [,)cico 13364  [,]cicc 13365  chash 14348  Σcsu 15702  expce 16077  Basecbs 17228  s cress 17251  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712   MndHom cmhm 18759  SubMndcsubmnd 18760  .gcmg 19050  SubGrpcsubg 19103   GrpHom cghm 19195   GrpIso cgim 19240  CMndccmn 19761  Abelcabl 19762  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  SubRingcsubrg 20529  DivRingcdr 20689  fldccnfld 21315  fldcrefld 21564  logclog 26515  𝑐ccxp 26516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-subrng 20506  df-subrg 20530  df-drng 20691  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-refld 21565  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518
This theorem is referenced by:  amgm  26953  amgm2d  44222  amgm3d  44223  amgm4d  44224
  Copyright terms: Public domain W3C validator