MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 26876
Description: Lemma for amgm 26877. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
amgm.2 (𝜑𝐴 ∈ Fin)
amgm.3 (𝜑𝐴 ≠ ∅)
amgm.4 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlem (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlem
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 21280 . . . . . . . 8 0 = (0g‘ℂfld)
2 cnring 21278 . . . . . . . . 9 fld ∈ Ring
3 ringabl 20166 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (𝜑 → ℂfld ∈ Abel)
5 amgm.2 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 resubdrg 21493 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
76simpli 483 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
8 subrgsubg 20462 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
97, 8mp1i 13 . . . . . . . 8 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
10 amgm.4 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
1110ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
1211relogcld 26508 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
1312renegcld 11581 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
1413fmpttd 7069 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
15 c0ex 11144 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
1714, 5, 16fdmfifsupp 9302 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 19826 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℝ)
1918recnd 11178 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℂ)
20 amgm.3 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
21 hashnncl 14307 . . . . . . . . 9 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
225, 21syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
2320, 22mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ)
2423nncnd 12178 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
2523nnne0d 12212 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2619, 24, 25divnegd 11947 . . . . 5 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
2712recnd 11178 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
285, 27gsumfsum 21327 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
2927negnegd 11500 . . . . . . . . . 10 ((𝜑𝑘𝐴) → --(log‘(𝐹𝑘)) = (log‘(𝐹𝑘)))
3029sumeq2dv 15644 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
3113recnd 11178 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
325, 31fsumneg 15729 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3328, 30, 323eqtr2rd 2771 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘(𝐹𝑘)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
345, 31gsumfsum 21327 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3534negeqd 11391 . . . . . . . 8 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3610feqmptd 6911 . . . . . . . . . 10 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
37 relogf1o 26451 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6782 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . . . . 12 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6911 . . . . . . . . . . 11 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
41 fvres 6859 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
4241mpteq2ia 5197 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
4340, 42eqtrdi 2780 . . . . . . . . . 10 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
44 fveq2 6840 . . . . . . . . . 10 (𝑥 = (𝐹𝑘) → (log‘𝑥) = (log‘(𝐹𝑘)))
4511, 36, 43, 44fmptco 7083 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹) = (𝑘𝐴 ↦ (log‘(𝐹𝑘))))
4645oveq2d 7385 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
4733, 35, 463eqtr4d 2774 . . . . . . 7 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrp‘ℂfld)
4948oveq1i 7379 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5049rpmsubg 21324 . . . . . . . . . . . . 13 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
51 subgsubm 19056 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
53 cnfldbas 21244 . . . . . . . . . . . . . . 15 ℂ = (Base‘ℂfld)
54 cndrng 21286 . . . . . . . . . . . . . . 15 fld ∈ DivRing
5553, 1, 54drngui 20620 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (Unit‘ℂfld)
5655, 48unitsubm 20271 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
57 eqid 2729 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5857subsubm 18719 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
6052, 59mpbi 230 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
6160simpli 483 . . . . . . . . . 10 + ∈ (SubMnd‘𝑀)
62 eqid 2729 . . . . . . . . . . 11 (𝑀s+) = (𝑀s+)
6362submbas 18717 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
6461, 63ax-mp 5 . . . . . . . . 9 + = (Base‘(𝑀s+))
65 cnfld1 21281 . . . . . . . . . . . 12 1 = (1r‘ℂfld)
6648, 65ringidval 20068 . . . . . . . . . . 11 1 = (0g𝑀)
6762, 66subm0 18718 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀s+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0g‘(𝑀s+))
69 cncrng 21276 . . . . . . . . . . 11 fld ∈ CRing
7048crngmgp 20126 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (𝜑𝑀 ∈ CMnd)
7262submmnd 18716 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑀s+) ∈ Mnd)
7462subcmn 19743 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
7571, 73, 74syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀s+) ∈ CMnd)
76 df-refld 21490 . . . . . . . . . . . 12 fld = (ℂflds ℝ)
7776subrgring 20459 . . . . . . . . . . 11 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 fld ∈ Ring
79 ringmnd 20128 . . . . . . . . . 10 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (𝜑 → ℝfld ∈ Mnd)
8148oveq1i 7379 . . . . . . . . . . . 12 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
8281reloggim 26484 . . . . . . . . . . 11 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
83 gimghm 19172 . . . . . . . . . . 11 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
85 ghmmhm 19134 . . . . . . . . . 10 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
87 1ex 11146 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ V)
8910, 5, 88fdmfifsupp 9302 . . . . . . . . 9 (𝜑𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 19844 . . . . . . . 8 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
91 subgsubm 19056 . . . . . . . . . 10 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
929, 91syl 17 . . . . . . . . 9 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
93 fco 6694 . . . . . . . . . 10 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
9439, 10, 93syl2anc 584 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
955, 92, 94, 76gsumsubm 18738 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
975, 96, 10, 62gsumsubm 18738 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
9897fveq2d 6844 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
9990, 95, 983eqtr4d 2774 . . . . . . 7 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 19825 . . . . . . . 8 (𝜑 → (𝑀 Σg 𝐹) ∈ ℝ+)
101100fvresd 6860 . . . . . . 7 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
10247, 99, 1013eqtrd 2768 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (log‘(𝑀 Σg 𝐹)))
103102oveq1d 7384 . . . . 5 (𝜑 → (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)))
104100relogcld 26508 . . . . . . 7 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℝ)
105104recnd 11178 . . . . . 6 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℂ)
106105, 24, 25divrec2d 11938 . . . . 5 (𝜑 → ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10726, 103, 1063eqtrd 2768 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10836oveq2d 7385 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
10911rpcnd 12973 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1105, 109gsumfsum 21327 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
111108, 110eqtrd 2764 . . . . . . . 8 (𝜑 → (ℂfld Σg 𝐹) = Σ𝑘𝐴 (𝐹𝑘))
1125, 20, 11fsumrpcl 15679 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℝ+)
113111, 112eqeltrd 2828 . . . . . . 7 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ+)
11423nnrpd 12969 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℝ+)
115113, 114rpdivcld 12988 . . . . . 6 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+)
116115relogcld 26508 . . . . 5 (𝜑 → (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ)
11718, 23nndivred 12216 . . . . 5 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℝ)
118 rpssre 12935 . . . . . . . . 9 + ⊆ ℝ
119118a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
120 relogcl 26460 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (log‘𝑤) ∈ ℝ)
121120adantl 481 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
122121renegcld 11581 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
123122fmpttd 7069 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
124 ioorp 13362 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2820 . . . . . . . . . . 11 (𝑎 ∈ (0(,)+∞) ↔ 𝑎 ∈ ℝ+)
126124eleq2i 2820 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 13356 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
128125, 126, 127syl2anbr 599 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
129128, 124sseqtrdi 3984 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
130129adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
13123nnrecred 12213 . . . . . . . . . 10 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
132114rpreccld 12981 . . . . . . . . . . 11 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
133132rpge0d 12975 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (♯‘𝐴)))
134 elrege0 13391 . . . . . . . . . 10 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (♯‘𝐴))))
135131, 133, 134sylanbrc 583 . . . . . . . . 9 (𝜑 → (1 / (♯‘𝐴)) ∈ (0[,)+∞))
136 fconst6g 6731 . . . . . . . . 9 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
138 0lt1 11676 . . . . . . . . 9 0 < 1
139 fconstmpt 5693 . . . . . . . . . . 11 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
140139oveq2i 7380 . . . . . . . . . 10 (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
141 ringmnd 20128 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Mnd)
143131recnd 11178 . . . . . . . . . . . 12 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
144 eqid 2729 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
14553, 144gsumconst 19840 . . . . . . . . . . . 12 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
146142, 5, 143, 145syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
14723nnzd 12532 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
148 cnfldmulg 21291 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
149147, 143, 148syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
15024, 25recidd 11929 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
151146, 149, 1503eqtrd 2768 . . . . . . . . . 10 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = 1)
152140, 151eqtrid 2776 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
153138, 152breqtrrid 5140 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))
154 logccv 26548 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1551543adant1 1130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
156 ioossre 13344 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℝ
157 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
158156, 157sselid 3941 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
159 simp21 1207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
160159relogcld 26508 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
161158, 160remulcld 11180 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
162 1re 11150 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 11462 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
164162, 158, 163sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
165 simp22 1208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
166165relogcld 26508 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
167164, 166remulcld 11180 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
168161, 167readdcld 11179 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
169 simp1 1136 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑)
170 ioossicc 13370 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ (0[,]1)
171170, 157sselid 3941 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1))
172119, 130cvxcl 26871 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
174173relogcld 26508 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
175168, 174ltnegd 11732 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
176155, 175mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
177 fveq2 6840 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
178177negeqd 11391 . . . . . . . . . . . 12 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
179 eqid 2729 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
180 negex 11395 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
181178, 179, 180fvmpt 6950 . . . . . . . . . . 11 (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
183 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
184183negeqd 11391 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
185 negex 11395 . . . . . . . . . . . . . . . 16 -(log‘𝑥) ∈ V
186184, 179, 185fvmpt 6950 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
188187oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
189158recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
190160recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
191189, 190mulneg2d 11608 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
192188, 191eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
193 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
194193negeqd 11391 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
195 negex 11395 . . . . . . . . . . . . . . . 16 -(log‘𝑦) ∈ V
196194, 179, 195fvmpt 6950 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
198197oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
199164recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
200166recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
201199, 200mulneg2d 11608 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
202198, 201eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
203192, 202oveq12d 7387 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
204161recnd 11178 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
205167recnd 11178 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
206204, 205negdid 11522 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
207203, 206eqtr4d 2767 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
208176, 182, 2073brtr4d 5134 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
209119, 123, 130, 208scvxcvx 26872 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 26875 . . . . . . 7 (𝜑 → (((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))))
211210simprd 495 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))))
212131adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
2145, 212, 11, 213, 36offval2 7653 . . . . . . . . . . . 12 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘))))
215214oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))))
216 cnfldmul 21248 . . . . . . . . . . . 12 · = (.r‘ℂfld)
2172a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Ring)
218109fmpttd 7069 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)):𝐴⟶ℂ)
219218, 5, 16fdmfifsupp 9302 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) finSupp 0)
22053, 1, 216, 217, 5, 143, 109, 219gsummulc2 20202 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
221 fss 6686 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
22210, 118, 221sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℝ)
22310, 5, 16fdmfifsupp 9302 . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0)
2241, 4, 5, 9, 222, 223gsumsubgcl 19826 . . . . . . . . . . . . . 14 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ)
225224recnd 11178 . . . . . . . . . . . . 13 (𝜑 → (ℂfld Σg 𝐹) ∈ ℂ)
226225, 24, 25divrec2d 11938 . . . . . . . . . . . 12 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)))
227108oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
228226, 227eqtr2d 2765 . . . . . . . . . . 11 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
229215, 220, 2283eqtrd 2768 . . . . . . . . . 10 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
230229, 152oveq12d 7387 . . . . . . . . 9 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1))
231224, 23nndivred 12216 . . . . . . . . . . 11 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ)
232231recnd 11178 . . . . . . . . . 10 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℂ)
233232div1d 11926 . . . . . . . . 9 (𝜑 → (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
234230, 233eqtrd 2764 . . . . . . . 8 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
235234fveq2d 6844 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
236 fveq2 6840 . . . . . . . . . 10 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
237236negeqd 11391 . . . . . . . . 9 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
238 negex 11395 . . . . . . . . 9 -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V
239237, 179, 238fvmpt 6950 . . . . . . . 8 (((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
240115, 239syl 17 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
241235, 240eqtrd 2764 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
24253, 1, 216, 217, 5, 143, 31, 17gsummulc2 20202 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
243 negex 11395 . . . . . . . . . . . 12 -(log‘(𝐹𝑘)) ∈ V
244243a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
245 eqidd 2730 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
246 fveq2 6840 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
247246negeqd 11391 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
24811, 36, 245, 247fmptco 7083 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
2495, 212, 244, 213, 248offval2 7653 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘)))))
250249oveq2d 7385 . . . . . . . . 9 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))))
25119, 24, 25divrec2d 11938 . . . . . . . . 9 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
252242, 250, 2513eqtr4d 2774 . . . . . . . 8 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
253252, 152oveq12d 7387 . . . . . . 7 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1))
254117recnd 11178 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℂ)
255254div1d 11926 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
256253, 255eqtrd 2764 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
257211, 241, 2563brtr3d 5133 . . . . 5 (𝜑 → -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
258116, 117, 257lenegcon1d 11736 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
259107, 258eqbrtrrd 5126 . . 3 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
260131, 104remulcld 11180 . . . 4 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ)
261 efle 16062 . . . 4 ((((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ ∧ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
262260, 116, 261syl2anc 584 . . 3 (𝜑 → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
263259, 262mpbid 232 . 2 (𝜑 → (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
264100rpcnd 12973 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ ℂ)
265100rpne0d 12976 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0)
266264, 265, 143cxpefd 26597 . 2 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))))
267115reeflogd 26509 . . 3 (𝜑 → (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
268267eqcomd 2735 . 2 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
269263, 266, 2683brtr4d 5134 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  cres 5633  ccom 5635  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  f cof 7631  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  cz 12505  +crp 12927  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  chash 14271  Σcsu 15628  expce 16003  Basecbs 17155  s cress 17176  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637   MndHom cmhm 18684  SubMndcsubmnd 18685  .gcmg 18975  SubGrpcsubg 19028   GrpHom cghm 19120   GrpIso cgim 19165  CMndccmn 19686  Abelcabl 19687  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  SubRingcsubrg 20454  DivRingcdr 20614  fldccnfld 21240  fldcrefld 21489  logclog 26439  𝑐ccxp 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-refld 21490  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442
This theorem is referenced by:  amgm  26877  amgm2d  44160  amgm3d  44161  amgm4d  44162
  Copyright terms: Public domain W3C validator