MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgmlem Structured version   Visualization version   GIF version

Theorem amgmlem 25253
Description: Lemma for amgm 25254. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
amgm.2 (𝜑𝐴 ∈ Fin)
amgm.3 (𝜑𝐴 ≠ ∅)
amgm.4 (𝜑𝐹:𝐴⟶ℝ+)
Assertion
Ref Expression
amgmlem (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgmlem
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfld0 20255 . . . . . . . 8 0 = (0g‘ℂfld)
2 cnring 20253 . . . . . . . . 9 fld ∈ Ring
3 ringabl 19024 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ Abel)
42, 3mp1i 13 . . . . . . . 8 (𝜑 → ℂfld ∈ Abel)
5 amgm.2 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 resubdrg 20438 . . . . . . . . . 10 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
76simpli 484 . . . . . . . . 9 ℝ ∈ (SubRing‘ℂfld)
8 subrgsubg 19235 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
97, 8mp1i 13 . . . . . . . 8 (𝜑 → ℝ ∈ (SubGrp‘ℂfld))
10 amgm.4 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ+)
1110ffvelrnda 6723 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℝ+)
1211relogcld 24891 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℝ)
1312renegcld 10921 . . . . . . . . 9 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℝ)
1413fmpttd 6749 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))):𝐴⟶ℝ)
15 c0ex 10488 . . . . . . . . . 10 0 ∈ V
1615a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
1714, 5, 16fdmfifsupp 8696 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↦ -(log‘(𝐹𝑘))) finSupp 0)
181, 4, 5, 9, 14, 17gsumsubgcl 18764 . . . . . . 7 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℝ)
1918recnd 10522 . . . . . 6 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) ∈ ℂ)
20 amgm.3 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
21 hashnncl 13581 . . . . . . . . 9 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
225, 21syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
2320, 22mpbird 258 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℕ)
2423nncnd 11508 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℂ)
2523nnne0d 11541 . . . . . 6 (𝜑 → (♯‘𝐴) ≠ 0)
2619, 24, 25divnegd 11283 . . . . 5 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
2712recnd 10522 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (log‘(𝐹𝑘)) ∈ ℂ)
285, 27gsumfsum 20298 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
2927negnegd 10842 . . . . . . . . . 10 ((𝜑𝑘𝐴) → --(log‘(𝐹𝑘)) = (log‘(𝐹𝑘)))
3029sumeq2dv 14897 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = Σ𝑘𝐴 (log‘(𝐹𝑘)))
3113recnd 10522 . . . . . . . . . 10 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ ℂ)
325, 31fsumneg 14979 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 --(log‘(𝐹𝑘)) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3328, 30, 323eqtr2rd 2840 . . . . . . . 8 (𝜑 → -Σ𝑘𝐴 -(log‘(𝐹𝑘)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
345, 31gsumfsum 20298 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3534negeqd 10733 . . . . . . . 8 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = -Σ𝑘𝐴 -(log‘(𝐹𝑘)))
3610feqmptd 6608 . . . . . . . . . 10 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
37 relogf1o 24835 . . . . . . . . . . . . 13 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
38 f1of 6490 . . . . . . . . . . . . 13 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3937, 38mp1i 13 . . . . . . . . . . . 12 (𝜑 → (log ↾ ℝ+):ℝ+⟶ℝ)
4039feqmptd 6608 . . . . . . . . . . 11 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
41 fvres 6564 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
4241mpteq2ia 5058 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
4340, 42syl6eq 2849 . . . . . . . . . 10 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
44 fveq2 6545 . . . . . . . . . 10 (𝑥 = (𝐹𝑘) → (log‘𝑥) = (log‘(𝐹𝑘)))
4511, 36, 43, 44fmptco 6761 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹) = (𝑘𝐴 ↦ (log‘(𝐹𝑘))))
4645oveq2d 7039 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ (log‘(𝐹𝑘)))))
4733, 35, 463eqtr4d 2843 . . . . . . 7 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
48 amgm.1 . . . . . . . . . . . . . . 15 𝑀 = (mulGrp‘ℂfld)
4948oveq1i 7033 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5049rpmsubg 20295 . . . . . . . . . . . . 13 + ∈ (SubGrp‘(𝑀s (ℂ ∖ {0})))
51 subgsubm 18059 . . . . . . . . . . . . 13 (ℝ+ ∈ (SubGrp‘(𝑀s (ℂ ∖ {0}))) → ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))))
5250, 51ax-mp 5 . . . . . . . . . . . 12 + ∈ (SubMnd‘(𝑀s (ℂ ∖ {0})))
53 cnfldbas 20235 . . . . . . . . . . . . . . 15 ℂ = (Base‘ℂfld)
54 cndrng 20260 . . . . . . . . . . . . . . 15 fld ∈ DivRing
5553, 1, 54drngui 19202 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (Unit‘ℂfld)
5655, 48unitsubm 19114 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘𝑀))
57 eqid 2797 . . . . . . . . . . . . . 14 (𝑀s (ℂ ∖ {0})) = (𝑀s (ℂ ∖ {0}))
5857subsubm 17800 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))))
592, 56, 58mp2b 10 . . . . . . . . . . . 12 (ℝ+ ∈ (SubMnd‘(𝑀s (ℂ ∖ {0}))) ↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0})))
6052, 59mpbi 231 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ ∖ {0}))
6160simpli 484 . . . . . . . . . 10 + ∈ (SubMnd‘𝑀)
62 eqid 2797 . . . . . . . . . . 11 (𝑀s+) = (𝑀s+)
6362submbas 17798 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ = (Base‘(𝑀s+)))
6461, 63ax-mp 5 . . . . . . . . 9 + = (Base‘(𝑀s+))
65 cnfld1 20256 . . . . . . . . . . . 12 1 = (1r‘ℂfld)
6648, 65ringidval 18947 . . . . . . . . . . 11 1 = (0g𝑀)
6762, 66subm0 17799 . . . . . . . . . 10 (ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀s+)))
6861, 67ax-mp 5 . . . . . . . . 9 1 = (0g‘(𝑀s+))
69 cncrng 20252 . . . . . . . . . . 11 fld ∈ CRing
7048crngmgp 18999 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
7169, 70mp1i 13 . . . . . . . . . 10 (𝜑𝑀 ∈ CMnd)
7262submmnd 17797 . . . . . . . . . . 11 (ℝ+ ∈ (SubMnd‘𝑀) → (𝑀s+) ∈ Mnd)
7361, 72mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑀s+) ∈ Mnd)
7462subcmn 18686 . . . . . . . . . 10 ((𝑀 ∈ CMnd ∧ (𝑀s+) ∈ Mnd) → (𝑀s+) ∈ CMnd)
7571, 73, 74syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀s+) ∈ CMnd)
76 df-refld 20435 . . . . . . . . . . . 12 fld = (ℂflds ℝ)
7776subrgring 19232 . . . . . . . . . . 11 (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring)
787, 77ax-mp 5 . . . . . . . . . 10 fld ∈ Ring
79 ringmnd 19000 . . . . . . . . . 10 (ℝfld ∈ Ring → ℝfld ∈ Mnd)
8078, 79mp1i 13 . . . . . . . . 9 (𝜑 → ℝfld ∈ Mnd)
8148oveq1i 7033 . . . . . . . . . . . 12 (𝑀s+) = ((mulGrp‘ℂfld) ↾s+)
8281reloggim 24867 . . . . . . . . . . 11 (log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld)
83 gimghm 18149 . . . . . . . . . . 11 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpIso ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld))
8482, 83ax-mp 5 . . . . . . . . . 10 (log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld)
85 ghmmhm 18113 . . . . . . . . . 10 ((log ↾ ℝ+) ∈ ((𝑀s+) GrpHom ℝfld) → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
8684, 85mp1i 13 . . . . . . . . 9 (𝜑 → (log ↾ ℝ+) ∈ ((𝑀s+) MndHom ℝfld))
87 1ex 10490 . . . . . . . . . . 11 1 ∈ V
8887a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ V)
8910, 5, 88fdmfifsupp 8696 . . . . . . . . 9 (𝜑𝐹 finSupp 1)
9064, 68, 75, 80, 5, 86, 10, 89gsummhm 18782 . . . . . . . 8 (𝜑 → (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
91 subgsubm 18059 . . . . . . . . . 10 (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld))
929, 91syl 17 . . . . . . . . 9 (𝜑 → ℝ ∈ (SubMnd‘ℂfld))
93 fco 6406 . . . . . . . . . 10 (((log ↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
9439, 10, 93syl2anc 584 . . . . . . . . 9 (𝜑 → ((log ↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ)
955, 92, 94, 76gsumsubm 17816 . . . . . . . 8 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld Σg ((log ↾ ℝ+) ∘ 𝐹)))
9661a1i 11 . . . . . . . . . 10 (𝜑 → ℝ+ ∈ (SubMnd‘𝑀))
975, 96, 10, 62gsumsubm 17816 . . . . . . . . 9 (𝜑 → (𝑀 Σg 𝐹) = ((𝑀s+) Σg 𝐹))
9897fveq2d 6549 . . . . . . . 8 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾ ℝ+)‘((𝑀s+) Σg 𝐹)))
9990, 95, 983eqtr4d 2843 . . . . . . 7 (𝜑 → (ℂfld Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)))
10066, 71, 5, 96, 10, 89gsumsubmcl 18763 . . . . . . . 8 (𝜑 → (𝑀 Σg 𝐹) ∈ ℝ+)
101100fvresd 6565 . . . . . . 7 (𝜑 → ((log ↾ ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg 𝐹)))
10247, 99, 1013eqtrd 2837 . . . . . 6 (𝜑 → -(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) = (log‘(𝑀 Σg 𝐹)))
103102oveq1d 7038 . . . . 5 (𝜑 → (-(ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)))
104100relogcld 24891 . . . . . . 7 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℝ)
105104recnd 10522 . . . . . 6 (𝜑 → (log‘(𝑀 Σg 𝐹)) ∈ ℂ)
106105, 24, 25divrec2d 11274 . . . . 5 (𝜑 → ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10726, 103, 1063eqtrd 2837 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))
10836oveq2d 7039 . . . . . . . . 9 (𝜑 → (ℂfld Σg 𝐹) = (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))))
10911rpcnd 12287 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1105, 109gsumfsum 20298 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘))) = Σ𝑘𝐴 (𝐹𝑘))
111108, 110eqtrd 2833 . . . . . . . 8 (𝜑 → (ℂfld Σg 𝐹) = Σ𝑘𝐴 (𝐹𝑘))
1125, 20, 11fsumrpcl 14931 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐹𝑘) ∈ ℝ+)
113111, 112eqeltrd 2885 . . . . . . 7 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ+)
11423nnrpd 12283 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℝ+)
115113, 114rpdivcld 12302 . . . . . 6 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+)
116115relogcld 24891 . . . . 5 (𝜑 → (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ)
11718, 23nndivred 11545 . . . . 5 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℝ)
118 rpssre 12250 . . . . . . . . 9 + ⊆ ℝ
119118a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
120 relogcl 24844 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (log‘𝑤) ∈ ℝ)
121120adantl 482 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+) → (log‘𝑤) ∈ ℝ)
122121renegcld 10921 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+) → -(log‘𝑤) ∈ ℝ)
123122fmpttd 6749 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)):ℝ+⟶ℝ)
124 ioorp 12668 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
125124eleq2i 2876 . . . . . . . . . . 11 (𝑎 ∈ (0(,)+∞) ↔ 𝑎 ∈ ℝ+)
126124eleq2i 2876 . . . . . . . . . . 11 (𝑏 ∈ (0(,)+∞) ↔ 𝑏 ∈ ℝ+)
127 iccssioo2 12663 . . . . . . . . . . 11 ((𝑎 ∈ (0(,)+∞) ∧ 𝑏 ∈ (0(,)+∞)) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
128125, 126, 127syl2anbr 598 . . . . . . . . . 10 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞))
129128, 124syl6sseq 3944 . . . . . . . . 9 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (𝑎[,]𝑏) ⊆ ℝ+)
130129adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (𝑎[,]𝑏) ⊆ ℝ+)
13123nnrecred 11542 . . . . . . . . . 10 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ)
132114rpreccld 12295 . . . . . . . . . . 11 (𝜑 → (1 / (♯‘𝐴)) ∈ ℝ+)
133132rpge0d 12289 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (♯‘𝐴)))
134 elrege0 12696 . . . . . . . . . 10 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (♯‘𝐴))))
135131, 133, 134sylanbrc 583 . . . . . . . . 9 (𝜑 → (1 / (♯‘𝐴)) ∈ (0[,)+∞))
136 fconst6g 6443 . . . . . . . . 9 ((1 / (♯‘𝐴)) ∈ (0[,)+∞) → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
137135, 136syl 17 . . . . . . . 8 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞))
138 0lt1 11016 . . . . . . . . 9 0 < 1
139 fconstmpt 5507 . . . . . . . . . . 11 (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴)))
140139oveq2i 7034 . . . . . . . . . 10 (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
141 ringmnd 19000 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1422, 141mp1i 13 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Mnd)
143131recnd 10522 . . . . . . . . . . . 12 (𝜑 → (1 / (♯‘𝐴)) ∈ ℂ)
144 eqid 2797 . . . . . . . . . . . . 13 (.g‘ℂfld) = (.g‘ℂfld)
14553, 144gsumconst 18778 . . . . . . . . . . . 12 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
146142, 5, 143, 145syl3anc 1364 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))))
14723nnzd 11940 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) ∈ ℤ)
148 cnfldmulg 20263 . . . . . . . . . . . 12 (((♯‘𝐴) ∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
149147, 143, 148syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1 / (♯‘𝐴))) = ((♯‘𝐴) · (1 / (♯‘𝐴))))
15024, 25recidd 11265 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) · (1 / (♯‘𝐴))) = 1)
151146, 149, 1503eqtrd 2837 . . . . . . . . . 10 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ (1 / (♯‘𝐴)))) = 1)
152140, 151syl5eq 2845 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1)
153138, 152breqtrrid 5006 . . . . . . . 8 (𝜑 → 0 < (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))
154 logccv 24931 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
1551543adant1 1123 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
156 ioossre 12652 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℝ
157 simp3 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
158156, 157sseldi 3893 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ)
159 simp21 1199 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+)
160159relogcld 24891 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℝ)
161158, 160remulcld 10524 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ)
162 1re 10494 . . . . . . . . . . . . . . 15 1 ∈ ℝ
163 resubcl 10804 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
164162, 158, 163sylancr 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℝ)
165 simp22 1200 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+)
166165relogcld 24891 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℝ)
167164, 166remulcld 10524 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℝ)
168161, 167readdcld 10523 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ)
169 simp1 1129 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑)
170 ioossicc 12676 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ (0[,]1)
171170, 157sseldi 3893 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1))
172119, 130cvxcl 25248 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
173169, 159, 165, 171, 172syl13anc 1365 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+)
174173relogcld 24891 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ)
175168, 174ltnegd 11072 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))))
176155, 175mpbid 233 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
177 fveq2 6545 . . . . . . . . . . . . 13 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
178177negeqd 10733 . . . . . . . . . . . 12 (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
179 eqid 2797 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤))
180 negex 10737 . . . . . . . . . . . 12 -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ V
181178, 179, 180fvmpt 6642 . . . . . . . . . . 11 (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
182173, 181syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))))
183 fveq2 6545 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥))
184183negeqd 10733 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥))
185 negex 10737 . . . . . . . . . . . . . . . 16 -(log‘𝑥) ∈ V
186184, 179, 185fvmpt 6642 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
187159, 186syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥))
188187oveq2d 7039 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥)))
189158recnd 10522 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
190160recnd 10522 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈ ℂ)
191189, 190mulneg2d 10948 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥)))
192188, 191eqtrd 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥)))
193 fveq2 6545 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦))
194193negeqd 10733 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦))
195 negex 10737 . . . . . . . . . . . . . . . 16 -(log‘𝑦) ∈ V
196194, 179, 195fvmpt 6642 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
197165, 196syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦))
198197oveq2d 7039 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦)))
199164recnd 10522 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
200166recnd 10522 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈ ℂ)
201199, 200mulneg2d 10948 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
202198, 201eqtrd 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦)))
203192, 202oveq12d 7041 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
204161recnd 10522 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ)
205167recnd 10522 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈ ℂ)
206204, 205negdid 10864 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦))))
207203, 206eqtr4d 2836 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))
208176, 182, 2073brtr4d 5000 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑦))))
209119, 123, 130, 208scvxcvx 25249 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ (0[,]1))) → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘𝑣))))
210119, 123, 130, 5, 137, 10, 153, 209jensen 25252 . . . . . . 7 (𝜑 → (((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈ ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))))
211210simprd 496 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤ ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))))
212131adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (1 / (♯‘𝐴)) ∈ ℝ)
213139a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘𝐴 ↦ (1 / (♯‘𝐴))))
2145, 212, 11, 213, 36offval2 7291 . . . . . . . . . . . 12 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘))))
215214oveq2d 7039 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))))
216 cnfldadd 20236 . . . . . . . . . . . 12 + = (+g‘ℂfld)
217 cnfldmul 20237 . . . . . . . . . . . 12 · = (.r‘ℂfld)
2182a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂfld ∈ Ring)
219109fmpttd 6749 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)):𝐴⟶ℂ)
220219, 5, 16fdmfifsupp 8696 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) finSupp 0)
22153, 1, 216, 217, 218, 5, 143, 109, 220gsummulc2 19051 . . . . . . . . . . 11 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
222 fss 6402 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
22310, 118, 222sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℝ)
22410, 5, 16fdmfifsupp 8696 . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0)
2251, 4, 5, 9, 223, 224gsumsubgcl 18764 . . . . . . . . . . . . . 14 (𝜑 → (ℂfld Σg 𝐹) ∈ ℝ)
226225recnd 10522 . . . . . . . . . . . . 13 (𝜑 → (ℂfld Σg 𝐹) ∈ ℂ)
227226, 24, 25divrec2d 11274 . . . . . . . . . . . 12 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)))
228108oveq2d 7039 . . . . . . . . . . . 12 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))))
229227, 228eqtr2d 2834 . . . . . . . . . . 11 (𝜑 → ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ (𝐹𝑘)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
230215, 221, 2293eqtrd 2837 . . . . . . . . . 10 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
231230, 152oveq12d 7041 . . . . . . . . 9 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1))
232225, 23nndivred 11545 . . . . . . . . . . 11 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ)
233232recnd 10522 . . . . . . . . . 10 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℂ)
234233div1d 11262 . . . . . . . . 9 (𝜑 → (((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
235231, 234eqtrd 2833 . . . . . . . 8 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
236235fveq2d 6549 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
237 fveq2 6545 . . . . . . . . . 10 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
238237negeqd 10733 . . . . . . . . 9 (𝑤 = ((ℂfld Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
239 negex 10737 . . . . . . . . 9 -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V
240238, 179, 239fvmpt 6642 . . . . . . . 8 (((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
241115, 240syl 17 . . . . . . 7 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
242236, 241eqtrd 2833 . . . . . 6 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤))‘((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · 𝐹)) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
24353, 1, 216, 217, 218, 5, 143, 31, 17gsummulc2 19051 . . . . . . . . 9 (𝜑 → (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
244 negex 10737 . . . . . . . . . . . 12 -(log‘(𝐹𝑘)) ∈ V
245244a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → -(log‘(𝐹𝑘)) ∈ V)
246 eqidd 2798 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) = (𝑤 ∈ ℝ+ ↦ -(log‘𝑤)))
247 fveq2 6545 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑘) → (log‘𝑤) = (log‘(𝐹𝑘)))
248247negeqd 10733 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑘) → -(log‘𝑤) = -(log‘(𝐹𝑘)))
24911, 36, 246, 248fmptco 6761 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹) = (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))
2505, 212, 245, 213, 249offval2 7291 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘)))))
251250oveq2d 7039 . . . . . . . . 9 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld Σg (𝑘𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹𝑘))))))
25219, 24, 25divrec2d 11274 . . . . . . . . 9 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘))))))
253243, 251, 2523eqtr4d 2843 . . . . . . . 8 (𝜑 → (ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
254253, 152oveq12d 7041 . . . . . . 7 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1))
255117recnd 10522 . . . . . . . 8 (𝜑 → ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ∈ ℂ)
256255div1d 11262 . . . . . . 7 (𝜑 → (((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
257254, 256eqtrd 2833 . . . . . 6 (𝜑 → ((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘𝑓 · ((𝑤 ∈ ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
258211, 242, 2573brtr3d 4999 . . . . 5 (𝜑 → -(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)))
259116, 117, 258lenegcon1d 11076 . . . 4 (𝜑 → -((ℂfld Σg (𝑘𝐴 ↦ -(log‘(𝐹𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
260107, 259eqbrtrrd 4992 . . 3 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))
261131, 104remulcld 10524 . . . 4 (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ)
262 efle 15308 . . . 4 ((((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ∈ ℝ ∧ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
263261, 116, 262syl2anc 584 . . 3 (𝜑 → (((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))) ≤ (log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))))
264260, 263mpbid 233 . 2 (𝜑 → (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) ≤ (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
265100rpcnd 12287 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ ℂ)
266100rpne0d 12290 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0)
267265, 266, 143cxpefd 24980 . 2 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))))
268115reeflogd 24892 . . 3 (𝜑 → (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld Σg 𝐹) / (♯‘𝐴)))
269268eqcomd 2803 . 2 (𝜑 → ((ℂfld Σg 𝐹) / (♯‘𝐴)) = (exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))
270264, 267, 2693brtr4d 5000 1 (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  Vcvv 3440  cdif 3862  wss 3865  c0 4217  {csn 4478   class class class wbr 4968  cmpt 5047   × cxp 5448  cres 5452  ccom 5454  wf 6228  1-1-ontowf1o 6231  cfv 6232  (class class class)co 7023  𝑓 cof 7272  Fincfn 8364  cc 10388  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  +∞cpnf 10525   < clt 10528  cle 10529  cmin 10723  -cneg 10724   / cdiv 11151  cn 11492  cz 11835  +crp 12243  (,)cioo 12592  [,)cico 12594  [,]cicc 12595  chash 13544  Σcsu 14880  expce 15252  Basecbs 16316  s cress 16317  0gc0g 16546   Σg cgsu 16547  Mndcmnd 17737   MndHom cmhm 17776  SubMndcsubmnd 17777  .gcmg 17985  SubGrpcsubg 18031   GrpHom cghm 18100   GrpIso cgim 18142  CMndccmn 18637  Abelcabl 18638  mulGrpcmgp 18933  Ringcrg 18991  CRingccrg 18992  DivRingcdr 19196  SubRingcsubrg 19225  fldccnfld 20231  fldcrefld 20434  logclog 24823  𝑐ccxp 24824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-pi 15263  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-submnd 17779  df-grp 17868  df-minusg 17869  df-mulg 17986  df-subg 18034  df-ghm 18101  df-gim 18144  df-cntz 18192  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-dvr 19127  df-drng 19198  df-subrg 19227  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-refld 20435  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-cmp 21683  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-log 24825  df-cxp 24826
This theorem is referenced by:  amgm  25254  amgm2d  40058  amgm3d  40059  amgm4d  40060
  Copyright terms: Public domain W3C validator