Step | Hyp | Ref
| Expression |
1 | | cnfld0 20534 |
. . . . . . . 8
⊢ 0 =
(0g‘ℂfld) |
2 | | cnring 20532 |
. . . . . . . . 9
⊢
ℂfld ∈ Ring |
3 | | ringabl 19734 |
. . . . . . . . 9
⊢
(ℂfld ∈ Ring → ℂfld ∈
Abel) |
4 | 2, 3 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ℂfld
∈ Abel) |
5 | | amgm.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
6 | | resubdrg 20725 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
7 | 6 | simpli 483 |
. . . . . . . . 9
⊢ ℝ
∈ (SubRing‘ℂfld) |
8 | | subrgsubg 19945 |
. . . . . . . . 9
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝ ∈
(SubGrp‘ℂfld)) |
9 | 7, 8 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
(SubGrp‘ℂfld)) |
10 | | amgm.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) |
11 | 10 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈
ℝ+) |
12 | 11 | relogcld 25683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℝ) |
13 | 12 | renegcld 11332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℝ) |
14 | 13 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))):𝐴⟶ℝ) |
15 | | c0ex 10900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
V) |
17 | 14, 5, 16 | fdmfifsupp 9068 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘))) finSupp 0) |
18 | 1, 4, 5, 9, 14, 17 | gsumsubgcl 19436 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) ∈ ℝ) |
19 | 18 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) ∈ ℂ) |
20 | | amgm.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≠ ∅) |
21 | | hashnncl 14009 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin →
((♯‘𝐴) ∈
ℕ ↔ 𝐴 ≠
∅)) |
22 | 5, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
23 | 20, 22 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐴) ∈
ℕ) |
24 | 23 | nncnd 11919 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐴) ∈
ℂ) |
25 | 23 | nnne0d 11953 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐴) ≠ 0) |
26 | 19, 24, 25 | divnegd 11694 |
. . . . 5
⊢ (𝜑 → -((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) = (-(ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴))) |
27 | 12 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (log‘(𝐹‘𝑘)) ∈ ℂ) |
28 | 5, 27 | gsumfsum 20577 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘(𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 (log‘(𝐹‘𝑘))) |
29 | 27 | negnegd 11253 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → --(log‘(𝐹‘𝑘)) = (log‘(𝐹‘𝑘))) |
30 | 29 | sumeq2dv 15343 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘(𝐹‘𝑘)) = Σ𝑘 ∈ 𝐴 (log‘(𝐹‘𝑘))) |
31 | 13 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ ℂ) |
32 | 5, 31 | fsumneg 15427 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 --(log‘(𝐹‘𝑘)) = -Σ𝑘 ∈ 𝐴 -(log‘(𝐹‘𝑘))) |
33 | 28, 30, 32 | 3eqtr2rd 2785 |
. . . . . . . 8
⊢ (𝜑 → -Σ𝑘 ∈ 𝐴 -(log‘(𝐹‘𝑘)) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘(𝐹‘𝑘))))) |
34 | 5, 31 | gsumfsum 20577 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = Σ𝑘 ∈ 𝐴 -(log‘(𝐹‘𝑘))) |
35 | 34 | negeqd 11145 |
. . . . . . . 8
⊢ (𝜑 → -(ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = -Σ𝑘 ∈ 𝐴 -(log‘(𝐹‘𝑘))) |
36 | 10 | feqmptd 6819 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
37 | | relogf1o 25627 |
. . . . . . . . . . . . 13
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
38 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
39 | 37, 38 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → (log ↾
ℝ+):ℝ+⟶ℝ) |
40 | 39 | feqmptd 6819 |
. . . . . . . . . . 11
⊢ (𝜑 → (log ↾
ℝ+) = (𝑥
∈ ℝ+ ↦ ((log ↾
ℝ+)‘𝑥))) |
41 | | fvres 6775 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
42 | 41 | mpteq2ia 5173 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
43 | 40, 42 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝜑 → (log ↾
ℝ+) = (𝑥
∈ ℝ+ ↦ (log‘𝑥))) |
44 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑘) → (log‘𝑥) = (log‘(𝐹‘𝑘))) |
45 | 11, 36, 43, 44 | fmptco 6983 |
. . . . . . . . 9
⊢ (𝜑 → ((log ↾
ℝ+) ∘ 𝐹) = (𝑘 ∈ 𝐴 ↦ (log‘(𝐹‘𝑘)))) |
46 | 45 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (log‘(𝐹‘𝑘))))) |
47 | 33, 35, 46 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → -(ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = (ℂfld
Σg ((log ↾ ℝ+) ∘ 𝐹))) |
48 | | amgm.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑀 =
(mulGrp‘ℂfld) |
49 | 48 | oveq1i 7265 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↾s (ℂ
∖ {0})) = ((mulGrp‘ℂfld) ↾s
(ℂ ∖ {0})) |
50 | 49 | rpmsubg 20574 |
. . . . . . . . . . . . 13
⊢
ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖
{0}))) |
51 | | subgsubm 18692 |
. . . . . . . . . . . . 13
⊢
(ℝ+ ∈ (SubGrp‘(𝑀 ↾s (ℂ ∖ {0})))
→ ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0})))) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖
{0}))) |
53 | | cnfldbas 20514 |
. . . . . . . . . . . . . . 15
⊢ ℂ =
(Base‘ℂfld) |
54 | | cndrng 20539 |
. . . . . . . . . . . . . . 15
⊢
ℂfld ∈ DivRing |
55 | 53, 1, 54 | drngui 19912 |
. . . . . . . . . . . . . 14
⊢ (ℂ
∖ {0}) = (Unit‘ℂfld) |
56 | 55, 48 | unitsubm 19827 |
. . . . . . . . . . . . 13
⊢
(ℂfld ∈ Ring → (ℂ ∖ {0}) ∈
(SubMnd‘𝑀)) |
57 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ↾s (ℂ
∖ {0})) = (𝑀
↾s (ℂ ∖ {0})) |
58 | 57 | subsubm 18370 |
. . . . . . . . . . . . 13
⊢ ((ℂ
∖ {0}) ∈ (SubMnd‘𝑀) → (ℝ+ ∈
(SubMnd‘(𝑀
↾s (ℂ ∖ {0}))) ↔ (ℝ+ ∈
(SubMnd‘𝑀) ∧
ℝ+ ⊆ (ℂ ∖ {0})))) |
59 | 2, 56, 58 | mp2b 10 |
. . . . . . . . . . . 12
⊢
(ℝ+ ∈ (SubMnd‘(𝑀 ↾s (ℂ ∖ {0})))
↔ (ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0}))) |
60 | 52, 59 | mpbi 229 |
. . . . . . . . . . 11
⊢
(ℝ+ ∈ (SubMnd‘𝑀) ∧ ℝ+ ⊆ (ℂ
∖ {0})) |
61 | 60 | simpli 483 |
. . . . . . . . . 10
⊢
ℝ+ ∈ (SubMnd‘𝑀) |
62 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑀 ↾s
ℝ+) = (𝑀
↾s ℝ+) |
63 | 62 | submbas 18368 |
. . . . . . . . . 10
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → ℝ+ =
(Base‘(𝑀
↾s ℝ+))) |
64 | 61, 63 | ax-mp 5 |
. . . . . . . . 9
⊢
ℝ+ = (Base‘(𝑀 ↾s
ℝ+)) |
65 | | cnfld1 20535 |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘ℂfld) |
66 | 48, 65 | ringidval 19654 |
. . . . . . . . . . 11
⊢ 1 =
(0g‘𝑀) |
67 | 62, 66 | subm0 18369 |
. . . . . . . . . 10
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → 1 = (0g‘(𝑀 ↾s
ℝ+))) |
68 | 61, 67 | ax-mp 5 |
. . . . . . . . 9
⊢ 1 =
(0g‘(𝑀
↾s ℝ+)) |
69 | | cncrng 20531 |
. . . . . . . . . . 11
⊢
ℂfld ∈ CRing |
70 | 48 | crngmgp 19706 |
. . . . . . . . . . 11
⊢
(ℂfld ∈ CRing → 𝑀 ∈ CMnd) |
71 | 69, 70 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ CMnd) |
72 | 62 | submmnd 18367 |
. . . . . . . . . . 11
⊢
(ℝ+ ∈ (SubMnd‘𝑀) → (𝑀 ↾s ℝ+)
∈ Mnd) |
73 | 61, 72 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ Mnd) |
74 | 62 | subcmn 19353 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ CMnd ∧ (𝑀 ↾s
ℝ+) ∈ Mnd) → (𝑀 ↾s ℝ+)
∈ CMnd) |
75 | 71, 73, 74 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ↾s ℝ+)
∈ CMnd) |
76 | | df-refld 20722 |
. . . . . . . . . . . 12
⊢
ℝfld = (ℂfld ↾s
ℝ) |
77 | 76 | subrgring 19942 |
. . . . . . . . . . 11
⊢ (ℝ
∈ (SubRing‘ℂfld) → ℝfld
∈ Ring) |
78 | 7, 77 | ax-mp 5 |
. . . . . . . . . 10
⊢
ℝfld ∈ Ring |
79 | | ringmnd 19708 |
. . . . . . . . . 10
⊢
(ℝfld ∈ Ring → ℝfld ∈
Mnd) |
80 | 78, 79 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℝfld
∈ Mnd) |
81 | 48 | oveq1i 7265 |
. . . . . . . . . . . 12
⊢ (𝑀 ↾s
ℝ+) = ((mulGrp‘ℂfld)
↾s ℝ+) |
82 | 81 | reloggim 25659 |
. . . . . . . . . . 11
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) |
83 | | gimghm 18795 |
. . . . . . . . . . 11
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpIso ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) GrpHom ℝfld)) |
84 | 82, 83 | ax-mp 5 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) |
85 | | ghmmhm 18759 |
. . . . . . . . . 10
⊢ ((log
↾ ℝ+) ∈ ((𝑀 ↾s ℝ+)
GrpHom ℝfld) → (log ↾ ℝ+) ∈
((𝑀 ↾s
ℝ+) MndHom ℝfld)) |
86 | 84, 85 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (log ↾
ℝ+) ∈ ((𝑀 ↾s ℝ+)
MndHom ℝfld)) |
87 | | 1ex 10902 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
88 | 87 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
V) |
89 | 10, 5, 88 | fdmfifsupp 9068 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 finSupp 1) |
90 | 64, 68, 75, 80, 5, 86, 10, 89 | gsummhm 19454 |
. . . . . . . 8
⊢ (𝜑 → (ℝfld
Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg 𝐹))) |
91 | | subgsubm 18692 |
. . . . . . . . . 10
⊢ (ℝ
∈ (SubGrp‘ℂfld) → ℝ ∈
(SubMnd‘ℂfld)) |
92 | 9, 91 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ∈
(SubMnd‘ℂfld)) |
93 | | fco 6608 |
. . . . . . . . . 10
⊢ (((log
↾ ℝ+):ℝ+⟶ℝ ∧ 𝐹:𝐴⟶ℝ+) → ((log
↾ ℝ+) ∘ 𝐹):𝐴⟶ℝ) |
94 | 39, 10, 93 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((log ↾
ℝ+) ∘ 𝐹):𝐴⟶ℝ) |
95 | 5, 92, 94, 76 | gsumsubm 18388 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ 𝐹)) = (ℝfld
Σg ((log ↾ ℝ+) ∘ 𝐹))) |
96 | 61 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ+ ∈
(SubMnd‘𝑀)) |
97 | 5, 96, 10, 62 | gsumsubm 18388 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg 𝐹) = ((𝑀 ↾s ℝ+)
Σg 𝐹)) |
98 | 97 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg 𝐹)) = ((log ↾
ℝ+)‘((𝑀 ↾s ℝ+)
Σg 𝐹))) |
99 | 90, 95, 98 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg ((log ↾ ℝ+) ∘ 𝐹)) = ((log ↾
ℝ+)‘(𝑀 Σg 𝐹))) |
100 | 66, 71, 5, 96, 10, 89 | gsumsubmcl 19435 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg 𝐹) ∈
ℝ+) |
101 | 100 | fvresd 6776 |
. . . . . . 7
⊢ (𝜑 → ((log ↾
ℝ+)‘(𝑀 Σg 𝐹)) = (log‘(𝑀 Σg
𝐹))) |
102 | 47, 99, 101 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → -(ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) = (log‘(𝑀 Σg 𝐹))) |
103 | 102 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → (-(ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) = ((log‘(𝑀 Σg 𝐹)) / (♯‘𝐴))) |
104 | 100 | relogcld 25683 |
. . . . . . 7
⊢ (𝜑 → (log‘(𝑀 Σg
𝐹)) ∈
ℝ) |
105 | 104 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (log‘(𝑀 Σg
𝐹)) ∈
ℂ) |
106 | 105, 24, 25 | divrec2d 11685 |
. . . . 5
⊢ (𝜑 → ((log‘(𝑀 Σg
𝐹)) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg
𝐹)))) |
107 | 26, 103, 106 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → -((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹)))) |
108 | 36 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg 𝐹) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) |
109 | 11 | rpcnd 12703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
110 | 5, 109 | gsumfsum 20577 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
111 | 108, 110 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg 𝐹) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
112 | 5, 20, 11 | fsumrpcl 15377 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈
ℝ+) |
113 | 111, 112 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg 𝐹) ∈
ℝ+) |
114 | 23 | nnrpd 12699 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐴) ∈
ℝ+) |
115 | 113, 114 | rpdivcld 12718 |
. . . . . 6
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) ∈
ℝ+) |
116 | 115 | relogcld 25683 |
. . . . 5
⊢ (𝜑 →
(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) |
117 | 18, 23 | nndivred 11957 |
. . . . 5
⊢ (𝜑 → ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) ∈ ℝ) |
118 | | rpssre 12666 |
. . . . . . . . 9
⊢
ℝ+ ⊆ ℝ |
119 | 118 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+
⊆ ℝ) |
120 | | relogcl 25636 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℝ+
→ (log‘𝑤) ∈
ℝ) |
121 | 120 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(log‘𝑤) ∈
ℝ) |
122 | 121 | renegcld 11332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
-(log‘𝑤) ∈
ℝ) |
123 | 122 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)):ℝ+⟶ℝ) |
124 | | ioorp 13086 |
. . . . . . . . . . . 12
⊢
(0(,)+∞) = ℝ+ |
125 | 124 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (0(,)+∞) ↔
𝑎 ∈
ℝ+) |
126 | 124 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (0(,)+∞) ↔
𝑏 ∈
ℝ+) |
127 | | iccssioo2 13081 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ (0(,)+∞) ∧
𝑏 ∈ (0(,)+∞))
→ (𝑎[,]𝑏) ⊆
(0(,)+∞)) |
128 | 125, 126,
127 | syl2anbr 598 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆ (0(,)+∞)) |
129 | 128, 124 | sseqtrdi 3967 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (𝑎[,]𝑏) ⊆
ℝ+) |
130 | 129 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (𝑎[,]𝑏) ⊆
ℝ+) |
131 | 23 | nnrecred 11954 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℝ) |
132 | 114 | rpreccld 12711 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℝ+) |
133 | 132 | rpge0d 12705 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (1 /
(♯‘𝐴))) |
134 | | elrege0 13115 |
. . . . . . . . . 10
⊢ ((1 /
(♯‘𝐴)) ∈
(0[,)+∞) ↔ ((1 / (♯‘𝐴)) ∈ ℝ ∧ 0 ≤ (1 /
(♯‘𝐴)))) |
135 | 131, 133,
134 | sylanbrc 582 |
. . . . . . . . 9
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
(0[,)+∞)) |
136 | | fconst6g 6647 |
. . . . . . . . 9
⊢ ((1 /
(♯‘𝐴)) ∈
(0[,)+∞) → (𝐴
× {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞)) |
137 | 135, 136 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}):𝐴⟶(0[,)+∞)) |
138 | | 0lt1 11427 |
. . . . . . . . 9
⊢ 0 <
1 |
139 | | fconstmpt 5640 |
. . . . . . . . . . 11
⊢ (𝐴 × {(1 /
(♯‘𝐴))}) =
(𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴))) |
140 | 139 | oveq2i 7266 |
. . . . . . . . . 10
⊢
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) |
141 | | ringmnd 19708 |
. . . . . . . . . . . . 13
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
142 | 2, 141 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂfld
∈ Mnd) |
143 | 131 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 / (♯‘𝐴)) ∈
ℂ) |
144 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(.g‘ℂfld) =
(.g‘ℂfld) |
145 | 53, 144 | gsumconst 19450 |
. . . . . . . . . . . 12
⊢
((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ (1 / (♯‘𝐴)) ∈ ℂ) →
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1
/ (♯‘𝐴)))) |
146 | 142, 5, 143, 145 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) = ((♯‘𝐴)(.g‘ℂfld)(1
/ (♯‘𝐴)))) |
147 | 23 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) ∈
ℤ) |
148 | | cnfldmulg 20542 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐴)
∈ ℤ ∧ (1 / (♯‘𝐴)) ∈ ℂ) →
((♯‘𝐴)(.g‘ℂfld)(1
/ (♯‘𝐴))) =
((♯‘𝐴) ·
(1 / (♯‘𝐴)))) |
149 | 147, 143,
148 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐴)(.g‘ℂfld)(1
/ (♯‘𝐴))) =
((♯‘𝐴) ·
(1 / (♯‘𝐴)))) |
150 | 24, 25 | recidd 11676 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐴) · (1 /
(♯‘𝐴))) =
1) |
151 | 146, 149,
150 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) = 1) |
152 | 140, 151 | syl5eq 2791 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))})) = 1) |
153 | 138, 152 | breqtrrid 5108 |
. . . . . . . 8
⊢ (𝜑 → 0 <
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) |
154 | | logccv 25723 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+ ∧ 𝑥
< 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
155 | 154 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
156 | | ioossre 13069 |
. . . . . . . . . . . . . . 15
⊢ (0(,)1)
⊆ ℝ |
157 | | simp3 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1)) |
158 | 156, 157 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℝ) |
159 | | simp21 1204 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑥 ∈ ℝ+) |
160 | 159 | relogcld 25683 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℝ) |
161 | 158, 160 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℝ) |
162 | | 1re 10906 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
163 | | resubcl 11215 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ 𝑡
∈ ℝ) → (1 − 𝑡) ∈ ℝ) |
164 | 162, 158,
163 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℝ) |
165 | | simp22 1205 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑦 ∈ ℝ+) |
166 | 165 | relogcld 25683 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℝ) |
167 | 164, 166 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℝ) |
168 | 161, 167 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) ∈ ℝ) |
169 | | simp1 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝜑) |
170 | | ioossicc 13094 |
. . . . . . . . . . . . . . 15
⊢ (0(,)1)
⊆ (0[,]1) |
171 | 170, 157 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0[,]1)) |
172 | 119, 130 | cvxcl 26039 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑡 ∈ (0[,]1)))
→ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
173 | 169, 159,
165, 171, 172 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈
ℝ+) |
174 | 173 | relogcld 25683 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ ℝ) |
175 | 168, 174 | ltnegd 11483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) < (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ↔ -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))))) |
176 | 155, 175 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
177 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → (log‘𝑤) = (log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
178 | 177 | negeqd 11145 |
. . . . . . . . . . . 12
⊢ (𝑤 = ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) → -(log‘𝑤) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
179 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℝ+
↦ -(log‘𝑤)) =
(𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) |
180 | | negex 11149 |
. . . . . . . . . . . 12
⊢
-(log‘((𝑡
· 𝑥) + ((1 −
𝑡) · 𝑦))) ∈ V |
181 | 178, 179,
180 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ ℝ+ → ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
182 | 173, 181 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = -(log‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))) |
183 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (log‘𝑤) = (log‘𝑥)) |
184 | 183 | negeqd 11145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → -(log‘𝑤) = -(log‘𝑥)) |
185 | | negex 11149 |
. . . . . . . . . . . . . . . 16
⊢
-(log‘𝑥)
∈ V |
186 | 184, 179,
185 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
187 | 159, 186 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥) = -(log‘𝑥)) |
188 | 187 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = (𝑡 · -(log‘𝑥))) |
189 | 158 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ) |
190 | 160 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑥) ∈
ℂ) |
191 | 189, 190 | mulneg2d 11359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · -(log‘𝑥)) = -(𝑡 · (log‘𝑥))) |
192 | 188, 191 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) = -(𝑡 · (log‘𝑥))) |
193 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑦 → (log‘𝑤) = (log‘𝑦)) |
194 | 193 | negeqd 11145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑦 → -(log‘𝑤) = -(log‘𝑦)) |
195 | | negex 11149 |
. . . . . . . . . . . . . . . 16
⊢
-(log‘𝑦)
∈ V |
196 | 194, 179,
195 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
197 | 165, 196 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦) = -(log‘𝑦)) |
198 | 197 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = ((1 − 𝑡) · -(log‘𝑦))) |
199 | 164 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℂ) |
200 | 166 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (log‘𝑦) ∈
ℂ) |
201 | 199, 200 | mulneg2d 11359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · -(log‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
202 | 198, 201 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)) = -((1 − 𝑡) · (log‘𝑦))) |
203 | 192, 202 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
204 | 161 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝑡 · (log‘𝑥)) ∈ ℂ) |
205 | 167 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((1 − 𝑡) · (log‘𝑦)) ∈
ℂ) |
206 | 204, 205 | negdid 11275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦))) = (-(𝑡 · (log‘𝑥)) + -((1 − 𝑡) · (log‘𝑦)))) |
207 | 203, 206 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦))) = -((𝑡 · (log‘𝑥)) + ((1 − 𝑡) · (log‘𝑦)))) |
208 | 176, 182,
207 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+
∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑥)) + ((1 − 𝑡) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑦)))) |
209 | 119, 123,
130, 208 | scvxcvx 26040 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+
∧ 𝑠 ∈ (0[,]1)))
→ ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤))‘((𝑠 · 𝑢) + ((1 − 𝑠) · 𝑣))) ≤ ((𝑠 · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑢)) + ((1 − 𝑠) · ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘𝑣)))) |
210 | 119, 123,
130, 5, 137, 10, 153, 209 | jensen 26043 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) ∈
ℝ+ ∧ ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤
((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))}))))) |
211 | 210 | simprd 495 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) ≤
((ℂfld Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))})))) |
212 | 131 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 / (♯‘𝐴)) ∈
ℝ) |
213 | 139 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 × {(1 / (♯‘𝐴))}) = (𝑘 ∈ 𝐴 ↦ (1 / (♯‘𝐴)))) |
214 | 5, 212, 11, 213, 36 | offval2 7531 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹) = (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹‘𝑘)))) |
215 | 214 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) =
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹‘𝑘))))) |
216 | | cnfldadd 20515 |
. . . . . . . . . . . 12
⊢ + =
(+g‘ℂfld) |
217 | | cnfldmul 20516 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℂfld) |
218 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂfld
∈ Ring) |
219 | 109 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)):𝐴⟶ℂ) |
220 | 219, 5, 16 | fdmfifsupp 9068 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) finSupp 0) |
221 | 53, 1, 216, 217, 218, 5, 143, 109, 220 | gsummulc2 19761 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · (𝐹‘𝑘)))) = ((1 / (♯‘𝐴)) · (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))))) |
222 | | fss 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴⟶ℝ+ ∧
ℝ+ ⊆ ℝ) → 𝐹:𝐴⟶ℝ) |
223 | 10, 118, 222 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
224 | 10, 5, 16 | fdmfifsupp 9068 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 finSupp 0) |
225 | 1, 4, 5, 9, 223, 224 | gsumsubgcl 19436 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℂfld
Σg 𝐹) ∈ ℝ) |
226 | 225 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℂfld
Σg 𝐹) ∈ ℂ) |
227 | 226, 24, 25 | divrec2d 11685 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld
Σg 𝐹))) |
228 | 108 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 / (♯‘𝐴)) ·
(ℂfld Σg 𝐹)) = ((1 / (♯‘𝐴)) · (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))))) |
229 | 227, 228 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1 / (♯‘𝐴)) ·
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)))) = ((ℂfld
Σg 𝐹) / (♯‘𝐴))) |
230 | 215, 221,
229 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) =
((ℂfld Σg 𝐹) / (♯‘𝐴))) |
231 | 230, 152 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) =
(((ℂfld Σg 𝐹) / (♯‘𝐴)) / 1)) |
232 | 225, 23 | nndivred 11957 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) ∈ ℝ) |
233 | 232 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) ∈ ℂ) |
234 | 233 | div1d 11673 |
. . . . . . . . 9
⊢ (𝜑 → (((ℂfld
Σg 𝐹) / (♯‘𝐴)) / 1) = ((ℂfld
Σg 𝐹) / (♯‘𝐴))) |
235 | 231, 234 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld
Σg 𝐹) / (♯‘𝐴))) |
236 | 235 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) = ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
237 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = ((ℂfld
Σg 𝐹) / (♯‘𝐴)) → (log‘𝑤) = (log‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
238 | 237 | negeqd 11145 |
. . . . . . . . 9
⊢ (𝑤 = ((ℂfld
Σg 𝐹) / (♯‘𝐴)) → -(log‘𝑤) = -(log‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
239 | | negex 11149 |
. . . . . . . . 9
⊢
-(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ V |
240 | 238, 179,
239 | fvmpt 6857 |
. . . . . . . 8
⊢
(((ℂfld Σg 𝐹) / (♯‘𝐴)) ∈ ℝ+ → ((𝑤 ∈ ℝ+
↦ -(log‘𝑤))‘((ℂfld
Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
241 | 115, 240 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg 𝐹) / (♯‘𝐴))) = -(log‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
242 | 236, 241 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤))‘((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· 𝐹)) /
(ℂfld Σg (𝐴 × {(1 / (♯‘𝐴))})))) =
-(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) |
243 | 53, 1, 216, 217, 218, 5, 143, 31, 17 | gsummulc2 19761 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹‘𝑘))))) = ((1 / (♯‘𝐴)) ·
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
244 | | negex 11149 |
. . . . . . . . . . . 12
⊢
-(log‘(𝐹‘𝑘)) ∈ V |
245 | 244 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -(log‘(𝐹‘𝑘)) ∈ V) |
246 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) = (𝑤 ∈ ℝ+
↦ -(log‘𝑤))) |
247 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑘) → (log‘𝑤) = (log‘(𝐹‘𝑘))) |
248 | 247 | negeqd 11145 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑘) → -(log‘𝑤) = -(log‘(𝐹‘𝑘))) |
249 | 11, 36, 246, 248 | fmptco 6983 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑤 ∈ ℝ+ ↦
-(log‘𝑤)) ∘
𝐹) = (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) |
250 | 5, 212, 245, 213, 249 | offval2 7531 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹)) = (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹‘𝑘))))) |
251 | 250 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ ((1 / (♯‘𝐴)) · -(log‘(𝐹‘𝑘)))))) |
252 | 19, 24, 25 | divrec2d 11685 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) = ((1 / (♯‘𝐴)) · (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))))) |
253 | 243, 251,
252 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (𝜑 → (ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) = ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴))) |
254 | 253, 152 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → ((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))}))) =
(((ℂfld Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) / 1)) |
255 | 117 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) ∈ ℂ) |
256 | 255 | div1d 11673 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) / 1) = ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴))) |
257 | 254, 256 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((ℂfld
Σg ((𝐴 × {(1 / (♯‘𝐴))}) ∘f
· ((𝑤 ∈
ℝ+ ↦ -(log‘𝑤)) ∘ 𝐹))) / (ℂfld
Σg (𝐴 × {(1 / (♯‘𝐴))}))) = ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴))) |
258 | 211, 242,
257 | 3brtr3d 5101 |
. . . . 5
⊢ (𝜑 →
-(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ≤ ((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴))) |
259 | 116, 117,
258 | lenegcon1d 11487 |
. . . 4
⊢ (𝜑 → -((ℂfld
Σg (𝑘 ∈ 𝐴 ↦ -(log‘(𝐹‘𝑘)))) / (♯‘𝐴)) ≤ (log‘((ℂfld
Σg 𝐹) / (♯‘𝐴)))) |
260 | 107, 259 | eqbrtrrd 5094 |
. . 3
⊢ (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg
𝐹))) ≤
(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) |
261 | 131, 104 | remulcld 10936 |
. . . 4
⊢ (𝜑 → ((1 / (♯‘𝐴)) · (log‘(𝑀 Σg
𝐹))) ∈
ℝ) |
262 | | efle 15755 |
. . . 4
⊢ ((((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹))) ∈ ℝ ∧
(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))) ∈ ℝ) → (((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹))) ≤ (log‘((ℂfld
Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹)))) ≤
(exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))) |
263 | 261, 116,
262 | syl2anc 583 |
. . 3
⊢ (𝜑 → (((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹))) ≤ (log‘((ℂfld
Σg 𝐹) / (♯‘𝐴))) ↔ (exp‘((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹)))) ≤
(exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))))) |
264 | 260, 263 | mpbid 231 |
. 2
⊢ (𝜑 → (exp‘((1 /
(♯‘𝐴)) ·
(log‘(𝑀
Σg 𝐹)))) ≤
(exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))) |
265 | 100 | rpcnd 12703 |
. . 3
⊢ (𝜑 → (𝑀 Σg 𝐹) ∈
ℂ) |
266 | 100 | rpne0d 12706 |
. . 3
⊢ (𝜑 → (𝑀 Σg 𝐹) ≠ 0) |
267 | 265, 266,
143 | cxpefd 25772 |
. 2
⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴))) =
(exp‘((1 / (♯‘𝐴)) · (log‘(𝑀 Σg 𝐹))))) |
268 | 115 | reeflogd 25684 |
. . 3
⊢ (𝜑 →
(exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴)))) = ((ℂfld
Σg 𝐹) / (♯‘𝐴))) |
269 | 268 | eqcomd 2744 |
. 2
⊢ (𝜑 → ((ℂfld
Σg 𝐹) / (♯‘𝐴)) =
(exp‘(log‘((ℂfld Σg 𝐹) / (♯‘𝐴))))) |
270 | 264, 267,
269 | 3brtr4d 5102 |
1
⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 /
(♯‘𝐴))) ≤
((ℂfld Σg 𝐹) / (♯‘𝐴))) |