![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0archi | Structured version Visualization version GIF version |
Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
Ref | Expression |
---|---|
nn0archi | ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refld 21158 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
2 | 1 | oveq1i 7419 | . . 3 ⊢ (ℝfld ↾s ℕ0) = ((ℂfld ↾s ℝ) ↾s ℕ0) |
3 | resubdrg 21161 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
4 | 3 | simpli 485 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
5 | nn0ssre 12476 | . . . 4 ⊢ ℕ0 ⊆ ℝ | |
6 | ressabs 17194 | . . . 4 ⊢ ((ℝ ∈ (SubRing‘ℂfld) ∧ ℕ0 ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0)) | |
7 | 4, 5, 6 | mp2an 691 | . . 3 ⊢ ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0) |
8 | 2, 7 | eqtri 2761 | . 2 ⊢ (ℝfld ↾s ℕ0) = (ℂfld ↾s ℕ0) |
9 | retos 21171 | . . . 4 ⊢ ℝfld ∈ Toset | |
10 | rearchi 32461 | . . . 4 ⊢ ℝfld ∈ Archi | |
11 | 9, 10 | pm3.2i 472 | . . 3 ⊢ (ℝfld ∈ Toset ∧ ℝfld ∈ Archi) |
12 | nn0subm 21000 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
13 | subrgsubg 20325 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
14 | subgsubm 19028 | . . . . . 6 ⊢ (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld)) | |
15 | 4, 13, 14 | mp2b 10 | . . . . 5 ⊢ ℝ ∈ (SubMnd‘ℂfld) |
16 | 1 | subsubm 18697 | . . . . 5 ⊢ (ℝ ∈ (SubMnd‘ℂfld) → (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ))) |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ)) |
18 | 12, 5, 17 | mpbir2an 710 | . . 3 ⊢ ℕ0 ∈ (SubMnd‘ℝfld) |
19 | submarchi 32332 | . . 3 ⊢ (((ℝfld ∈ Toset ∧ ℝfld ∈ Archi) ∧ ℕ0 ∈ (SubMnd‘ℝfld)) → (ℝfld ↾s ℕ0) ∈ Archi) | |
20 | 11, 18, 19 | mp2an 691 | . 2 ⊢ (ℝfld ↾s ℕ0) ∈ Archi |
21 | 8, 20 | eqeltrri 2831 | 1 ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ‘cfv 6544 (class class class)co 7409 ℝcr 11109 ℕ0cn0 12472 ↾s cress 17173 Tosetctos 18369 SubMndcsubmnd 18670 SubGrpcsubg 19000 SubRingcsubrg 20315 DivRingcdr 20357 ℂfldccnfld 20944 ℝfldcrefld 21157 Archicarchi 32323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-seq 13967 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-proset 18248 df-poset 18266 df-plt 18283 df-toset 18370 df-ps 18519 df-tsr 18520 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-rnghom 20251 df-subrg 20317 df-drng 20359 df-field 20360 df-cnfld 20945 df-zring 21018 df-zrh 21053 df-refld 21158 df-omnd 32217 df-ogrp 32218 df-inftm 32324 df-archi 32325 df-orng 32415 df-ofld 32416 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |