| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0archi | Structured version Visualization version GIF version | ||
| Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn0archi | ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refld 21570 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 2 | 1 | oveq1i 7420 | . . 3 ⊢ (ℝfld ↾s ℕ0) = ((ℂfld ↾s ℝ) ↾s ℕ0) |
| 3 | resubdrg 21573 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 4 | 3 | simpli 483 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 5 | nn0ssre 12510 | . . . 4 ⊢ ℕ0 ⊆ ℝ | |
| 6 | ressabs 17274 | . . . 4 ⊢ ((ℝ ∈ (SubRing‘ℂfld) ∧ ℕ0 ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0) |
| 8 | 2, 7 | eqtri 2759 | . 2 ⊢ (ℝfld ↾s ℕ0) = (ℂfld ↾s ℕ0) |
| 9 | retos 21583 | . . . 4 ⊢ ℝfld ∈ Toset | |
| 10 | rearchi 33366 | . . . 4 ⊢ ℝfld ∈ Archi | |
| 11 | 9, 10 | pm3.2i 470 | . . 3 ⊢ (ℝfld ∈ Toset ∧ ℝfld ∈ Archi) |
| 12 | nn0subm 21395 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 13 | subrgsubg 20542 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 14 | subgsubm 19136 | . . . . . 6 ⊢ (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld)) | |
| 15 | 4, 13, 14 | mp2b 10 | . . . . 5 ⊢ ℝ ∈ (SubMnd‘ℂfld) |
| 16 | 1 | subsubm 18799 | . . . . 5 ⊢ (ℝ ∈ (SubMnd‘ℂfld) → (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ))) |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ)) |
| 18 | 12, 5, 17 | mpbir2an 711 | . . 3 ⊢ ℕ0 ∈ (SubMnd‘ℝfld) |
| 19 | submarchi 33189 | . . 3 ⊢ (((ℝfld ∈ Toset ∧ ℝfld ∈ Archi) ∧ ℕ0 ∈ (SubMnd‘ℝfld)) → (ℝfld ↾s ℕ0) ∈ Archi) | |
| 20 | 11, 18, 19 | mp2an 692 | . 2 ⊢ (ℝfld ↾s ℕ0) ∈ Archi |
| 21 | 8, 20 | eqeltrri 2832 | 1 ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 ℕ0cn0 12506 ↾s cress 17256 Tosetctos 18431 SubMndcsubmnd 18765 SubGrpcsubg 19108 SubRingcsubrg 20534 DivRingcdr 20694 ℂfldccnfld 21320 ℝfldcrefld 21569 Archicarchi 33180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-seq 14025 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-proset 18311 df-poset 18330 df-plt 18345 df-toset 18432 df-ps 18581 df-tsr 18582 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-field 20697 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-refld 21570 df-omnd 33072 df-ogrp 33073 df-inftm 33181 df-archi 33182 df-orng 33324 df-ofld 33325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |