| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0archi | Structured version Visualization version GIF version | ||
| Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn0archi | ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refld 21514 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 2 | 1 | oveq1i 7397 | . . 3 ⊢ (ℝfld ↾s ℕ0) = ((ℂfld ↾s ℝ) ↾s ℕ0) |
| 3 | resubdrg 21517 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
| 4 | 3 | simpli 483 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
| 5 | nn0ssre 12446 | . . . 4 ⊢ ℕ0 ⊆ ℝ | |
| 6 | ressabs 17218 | . . . 4 ⊢ ((ℝ ∈ (SubRing‘ℂfld) ∧ ℕ0 ⊆ ℝ) → ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0)) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((ℂfld ↾s ℝ) ↾s ℕ0) = (ℂfld ↾s ℕ0) |
| 8 | 2, 7 | eqtri 2752 | . 2 ⊢ (ℝfld ↾s ℕ0) = (ℂfld ↾s ℕ0) |
| 9 | retos 21527 | . . . 4 ⊢ ℝfld ∈ Toset | |
| 10 | rearchi 33317 | . . . 4 ⊢ ℝfld ∈ Archi | |
| 11 | 9, 10 | pm3.2i 470 | . . 3 ⊢ (ℝfld ∈ Toset ∧ ℝfld ∈ Archi) |
| 12 | nn0subm 21339 | . . . 4 ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | |
| 13 | subrgsubg 20486 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld)) | |
| 14 | subgsubm 19080 | . . . . . 6 ⊢ (ℝ ∈ (SubGrp‘ℂfld) → ℝ ∈ (SubMnd‘ℂfld)) | |
| 15 | 4, 13, 14 | mp2b 10 | . . . . 5 ⊢ ℝ ∈ (SubMnd‘ℂfld) |
| 16 | 1 | subsubm 18743 | . . . . 5 ⊢ (ℝ ∈ (SubMnd‘ℂfld) → (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ))) |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (ℕ0 ∈ (SubMnd‘ℝfld) ↔ (ℕ0 ∈ (SubMnd‘ℂfld) ∧ ℕ0 ⊆ ℝ)) |
| 18 | 12, 5, 17 | mpbir2an 711 | . . 3 ⊢ ℕ0 ∈ (SubMnd‘ℝfld) |
| 19 | submarchi 33140 | . . 3 ⊢ (((ℝfld ∈ Toset ∧ ℝfld ∈ Archi) ∧ ℕ0 ∈ (SubMnd‘ℝfld)) → (ℝfld ↾s ℕ0) ∈ Archi) | |
| 20 | 11, 18, 19 | mp2an 692 | . 2 ⊢ (ℝfld ↾s ℕ0) ∈ Archi |
| 21 | 8, 20 | eqeltrri 2825 | 1 ⊢ (ℂfld ↾s ℕ0) ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 ℕ0cn0 12442 ↾s cress 17200 Tosetctos 18375 SubMndcsubmnd 18709 SubGrpcsubg 19052 SubRingcsubrg 20478 DivRingcdr 20638 ℂfldccnfld 21264 ℝfldcrefld 21513 Archicarchi 33131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-seq 13967 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-proset 18255 df-poset 18274 df-plt 18289 df-toset 18376 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-refld 21514 df-omnd 33013 df-ogrp 33014 df-inftm 33132 df-archi 33133 df-orng 33275 df-ofld 33276 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |