MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reust Structured version   Visualization version   GIF version

Theorem reust 25309
Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
reust (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))

Proof of Theorem reust
StepHypRef Expression
1 df-refld 21544 . . . 4 fld = (ℂflds ℝ)
21fveq2i 6831 . . 3 (UnifSt‘ℝfld) = (UnifSt‘(ℂflds ℝ))
3 reex 11104 . . . 4 ℝ ∈ V
4 ressuss 24178 . . . 4 (ℝ ∈ V → (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)))
53, 4ax-mp 5 . . 3 (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))
6 eqid 2733 . . . . 5 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
76cnflduss 25284 . . . 4 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
87oveq1i 7362 . . 3 ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
92, 5, 83eqtri 2760 . 2 (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
10 0re 11121 . . . 4 0 ∈ ℝ
1110ne0ii 4293 . . 3 ℝ ≠ ∅
12 cnxmet 24688 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
13 xmetpsmet 24264 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
1412, 13ax-mp 5 . . 3 (abs ∘ − ) ∈ (PsMet‘ℂ)
15 ax-resscn 11070 . . 3 ℝ ⊆ ℂ
16 restmetu 24486 . . 3 ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))))
1711, 14, 15, 16mp3an 1463 . 2 ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))
18 reds 21555 . . . 4 (abs ∘ − ) = (dist‘ℝfld)
1918reseq1i 5928 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2019fveq2i 6831 . 2 (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
219, 17, 203eqtri 2760 1 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  wss 3898  c0 4282   × cxp 5617  cres 5621  ccom 5623  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  cmin 11351  abscabs 15143  s cress 17143  distcds 17172  t crest 17326  PsMetcpsmet 21277  ∞Metcxmet 21278  metUnifcmetu 21284  fldccnfld 21293  fldcrefld 21543  UnifStcuss 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ico 13253  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-psmet 21285  df-xmet 21286  df-met 21287  df-fbas 21290  df-fg 21291  df-metu 21292  df-cnfld 21294  df-refld 21544  df-fil 23762  df-ust 24117  df-uss 24172
This theorem is referenced by:  recusp  25310  rerrext  34043
  Copyright terms: Public domain W3C validator