| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reust | Structured version Visualization version GIF version | ||
| Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| reust | ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refld 21530 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 2 | 1 | fveq2i 6829 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘(ℂfld ↾s ℝ)) |
| 3 | reex 11119 | . . . 4 ⊢ ℝ ∈ V | |
| 4 | ressuss 24166 | . . . 4 ⊢ (ℝ ∈ V → (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) |
| 6 | eqid 2729 | . . . . 5 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
| 7 | 6 | cnflduss 25272 | . . . 4 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
| 8 | 7 | oveq1i 7363 | . . 3 ⊢ ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
| 9 | 2, 5, 8 | 3eqtri 2756 | . 2 ⊢ (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
| 10 | 0re 11136 | . . . 4 ⊢ 0 ∈ ℝ | |
| 11 | 10 | ne0ii 4297 | . . 3 ⊢ ℝ ≠ ∅ |
| 12 | cnxmet 24676 | . . . 4 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 13 | xmetpsmet 24252 | . . . 4 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (abs ∘ − ) ∈ (PsMet‘ℂ) |
| 15 | ax-resscn 11085 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 16 | restmetu 24474 | . . 3 ⊢ ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))) | |
| 17 | 11, 14, 15, 16 | mp3an 1463 | . 2 ⊢ ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 18 | reds 21541 | . . . 4 ⊢ (abs ∘ − ) = (dist‘ℝfld) | |
| 19 | 18 | reseq1i 5930 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ)) |
| 20 | 19 | fveq2i 6829 | . 2 ⊢ (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| 21 | 9, 17, 20 | 3eqtri 2756 | 1 ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 − cmin 11365 abscabs 15159 ↾s cress 17159 distcds 17188 ↾t crest 17342 PsMetcpsmet 21263 ∞Metcxmet 21264 metUnifcmetu 21270 ℂfldccnfld 21279 ℝfldcrefld 21529 UnifStcuss 24157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-psmet 21271 df-xmet 21272 df-met 21273 df-fbas 21276 df-fg 21277 df-metu 21278 df-cnfld 21280 df-refld 21530 df-fil 23749 df-ust 24104 df-uss 24160 |
| This theorem is referenced by: recusp 25298 rerrext 33975 |
| Copyright terms: Public domain | W3C validator |