MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reust Structured version   Visualization version   GIF version

Theorem reust 24450
Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
reust (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))

Proof of Theorem reust
StepHypRef Expression
1 df-refld 20722 . . . 4 fld = (ℂflds ℝ)
21fveq2i 6759 . . 3 (UnifSt‘ℝfld) = (UnifSt‘(ℂflds ℝ))
3 reex 10893 . . . 4 ℝ ∈ V
4 ressuss 23322 . . . 4 (ℝ ∈ V → (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)))
53, 4ax-mp 5 . . 3 (UnifSt‘(ℂflds ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))
6 eqid 2738 . . . . 5 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
76cnflduss 24425 . . . 4 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
87oveq1i 7265 . . 3 ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
92, 5, 83eqtri 2770 . 2 (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ))
10 0re 10908 . . . 4 0 ∈ ℝ
1110ne0ii 4268 . . 3 ℝ ≠ ∅
12 cnxmet 23842 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
13 xmetpsmet 23409 . . . 4 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
1412, 13ax-mp 5 . . 3 (abs ∘ − ) ∈ (PsMet‘ℂ)
15 ax-resscn 10859 . . 3 ℝ ⊆ ℂ
16 restmetu 23632 . . 3 ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))))
1711, 14, 15, 16mp3an 1459 . 2 ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))
18 reds 20733 . . . 4 (abs ∘ − ) = (dist‘ℝfld)
1918reseq1i 5876 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ))
2019fveq2i 6759 . 2 (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
219, 17, 203eqtri 2770 1 (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253   × cxp 5578  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  cmin 11135  abscabs 14873  s cress 16867  distcds 16897  t crest 17048  PsMetcpsmet 20494  ∞Metcxmet 20495  metUnifcmetu 20501  fldccnfld 20510  fldcrefld 20721  UnifStcuss 23313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-psmet 20502  df-xmet 20503  df-met 20504  df-fbas 20507  df-fg 20508  df-metu 20509  df-cnfld 20511  df-refld 20722  df-fil 22905  df-ust 23260  df-uss 23316
This theorem is referenced by:  recusp  24451  rerrext  31859
  Copyright terms: Public domain W3C validator