![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reust | Structured version Visualization version GIF version |
Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
Ref | Expression |
---|---|
reust | ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refld 21157 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
2 | 1 | fveq2i 6894 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘(ℂfld ↾s ℝ)) |
3 | reex 11200 | . . . 4 ⊢ ℝ ∈ V | |
4 | ressuss 23766 | . . . 4 ⊢ (ℝ ∈ V → (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) |
6 | eqid 2732 | . . . . 5 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
7 | 6 | cnflduss 24872 | . . . 4 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
8 | 7 | oveq1i 7418 | . . 3 ⊢ ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
9 | 2, 5, 8 | 3eqtri 2764 | . 2 ⊢ (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
10 | 0re 11215 | . . . 4 ⊢ 0 ∈ ℝ | |
11 | 10 | ne0ii 4337 | . . 3 ⊢ ℝ ≠ ∅ |
12 | cnxmet 24288 | . . . 4 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
13 | xmetpsmet 23853 | . . . 4 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ)) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (abs ∘ − ) ∈ (PsMet‘ℂ) |
15 | ax-resscn 11166 | . . 3 ⊢ ℝ ⊆ ℂ | |
16 | restmetu 24078 | . . 3 ⊢ ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))) | |
17 | 11, 14, 15, 16 | mp3an 1461 | . 2 ⊢ ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
18 | reds 21168 | . . . 4 ⊢ (abs ∘ − ) = (dist‘ℝfld) | |
19 | 18 | reseq1i 5977 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ)) |
20 | 19 | fveq2i 6894 | . 2 ⊢ (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
21 | 9, 17, 20 | 3eqtri 2764 | 1 ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 × cxp 5674 ↾ cres 5678 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 ℝcr 11108 0cc0 11109 − cmin 11443 abscabs 15180 ↾s cress 17172 distcds 17205 ↾t crest 17365 PsMetcpsmet 20927 ∞Metcxmet 20928 metUnifcmetu 20934 ℂfldccnfld 20943 ℝfldcrefld 21156 UnifStcuss 23757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-psmet 20935 df-xmet 20936 df-met 20937 df-fbas 20940 df-fg 20941 df-metu 20942 df-cnfld 20944 df-refld 21157 df-fil 23349 df-ust 23704 df-uss 23760 |
This theorem is referenced by: recusp 24898 rerrext 32984 |
Copyright terms: Public domain | W3C validator |