| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reust | Structured version Visualization version GIF version | ||
| Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| Ref | Expression |
|---|---|
| reust | ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refld 21544 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
| 2 | 1 | fveq2i 6831 | . . 3 ⊢ (UnifSt‘ℝfld) = (UnifSt‘(ℂfld ↾s ℝ)) |
| 3 | reex 11104 | . . . 4 ⊢ ℝ ∈ V | |
| 4 | ressuss 24178 | . . . 4 ⊢ (ℝ ∈ V → (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (UnifSt‘(ℂfld ↾s ℝ)) = ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) |
| 6 | eqid 2733 | . . . . 5 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
| 7 | 6 | cnflduss 25284 | . . . 4 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
| 8 | 7 | oveq1i 7362 | . . 3 ⊢ ((UnifSt‘ℂfld) ↾t (ℝ × ℝ)) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
| 9 | 2, 5, 8 | 3eqtri 2760 | . 2 ⊢ (UnifSt‘ℝfld) = ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) |
| 10 | 0re 11121 | . . . 4 ⊢ 0 ∈ ℝ | |
| 11 | 10 | ne0ii 4293 | . . 3 ⊢ ℝ ≠ ∅ |
| 12 | cnxmet 24688 | . . . 4 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 13 | xmetpsmet 24264 | . . . 4 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ)) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (abs ∘ − ) ∈ (PsMet‘ℂ) |
| 15 | ax-resscn 11070 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 16 | restmetu 24486 | . . 3 ⊢ ((ℝ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℝ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ)))) | |
| 17 | 11, 14, 15, 16 | mp3an 1463 | . 2 ⊢ ((metUnif‘(abs ∘ − )) ↾t (ℝ × ℝ)) = (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 18 | reds 21555 | . . . 4 ⊢ (abs ∘ − ) = (dist‘ℝfld) | |
| 19 | 18 | reseq1i 5928 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ (ℝ × ℝ)) |
| 20 | 19 | fveq2i 6831 | . 2 ⊢ (metUnif‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| 21 | 9, 17, 20 | 3eqtri 2760 | 1 ⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 × cxp 5617 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 − cmin 11351 abscabs 15143 ↾s cress 17143 distcds 17172 ↾t crest 17326 PsMetcpsmet 21277 ∞Metcxmet 21278 metUnifcmetu 21284 ℂfldccnfld 21293 ℝfldcrefld 21543 UnifStcuss 24169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ico 13253 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-psmet 21285 df-xmet 21286 df-met 21287 df-fbas 21290 df-fg 21291 df-metu 21292 df-cnfld 21294 df-refld 21544 df-fil 23762 df-ust 24117 df-uss 24172 |
| This theorem is referenced by: recusp 25310 rerrext 34043 |
| Copyright terms: Public domain | W3C validator |